Compiler Design Course Project

You are to design, implement and document a one or two pass compiler (interpreter) for the programming language described on the following pages.

The compiler will produce a listing file which lists and numbers each line, interleaved with any error messages following the source file. Each error message should refer to a line number. Even if errors are present in the source code, your compiler should continue to analyze the input source code. Target code will be generated only if there are no errors.

The entire project is due the last day of the semester. You are to turn in;

1.
Source listing of your compiler

2.
2-3 pages of documentation describing the internal operation of the compiler. Describe any limitations of your compiler, the algorithms and data structures which you used, the purpose of major routines, how to run your compiler, etc.

3.
A selection of test cases run through your compiler with listings and object code (or intermediate code if you're writing an interpreter) selected to show oft the features of your compiler.

DESCRIPTION OF THE PROGRAMMING LANGUAGE

Lexical Units and Spacing

The lexical units of a program are identifiers, reserved words, numbers, strings, and delimiters.

A delimiter is any one of the following special characters:

() [] ; : . , * - + / < = >

or one of the following compound symbols:

<> := <= >=

Spaces may be inserted freely with no effect on meaning between lexical units. At least one space must separate adjacent identifiers or numbers. The end of a line is equivalent to a space except (1) it terminates comments and (2) is illegal in quoted character strings (see below). Thus each lexical unit must fit on one line.

IDENTIFIERS

Identifiers (names) consist of a letter followed by a sequence of letters or digits. Upper and lower case are considered equivalent. An identifier may be any length but must be distinguishable within the first 32 characters. Thus the two names

a11111111111111111111111111111112222 and

a11111111111111111111111111111119999 are not distinguishable.

NUMBERS

The only kind of number is the integer. An integer is a sequence of digits. Maximum and minimum values of integers are determined by our implementation.

STRINGS

A character string is a sequence of characters prefixed and terminated by the apostrophe character. The backslash character (\) acts as an escape. When followed by an n or a t, the backslash denotes a new line (CR) or tab. When followed by another character it denotes that character. Thus \' denotes the single quote. For example, the string DON'T would be represented as 'DON\'T'.

COMMENTS

A comment starts with an exclamation point (!) and is terminated by the end of a line. It may appear following a lexical unit or at the beginning of a program.

!This is a comment

RESERVED WORDS

The identifiers listed below are reserved words and may not be declared by the programmer:

and

array

begin

integer

do

else

end

function

if

of

or

not

procedure

program

read

then

var

while

write

SYNTAX

The language is basically the one in the handout with the following differences:

1.
The comments are as described above

2.
Strings are included

3.
Change the following productions as follows

program -> program id;

type -> standartype | array[num]

standard~type -> integer

statement -> variable assignop expression

 | procedure_statement

 | compound_statement

 | if expression then statement else statement
 | if expression then statement

 | while expression do statement

 | read_statement

 | write_statement

arguments -> (parameter_list) | ()

Include these new productions

read_statement
-> read (identifier_list)

identifier__list
-> variable,identifier_list | variable

 write_statement -> write(outputlist)

 outputlist -> outputitem |outputitem,outputlist

 outputitem -> string | expression_list

There is also an error in the definition of factor. In this definition include the production : factor -> id[expression]

Also, you may leave out the div operator. The division symbol means integer division

Note: All arrays start with index 0. Thus "array[5]" denotes an array indexed from 0 to 4

