THE SCANNER OR LEXICAL ANALYZER

Your scanner should break up a program into a stream of tokens. The tokens are described in the description of the programming language. Here are some suggestions for building your scanner. These are only suggestions and you may construct it any way you like. However, your scanner must:

1.
Find tokens

2.
Install a new identifier in the symbol table and return the address

3.
Return the symbol table address of a previously installed identifier

4.
Produce a numbered listing of the source program

5.
Produce error messages for LEXICAL errors.

The first decision you must make is what is the format of your tokens.

One idea might be to return an object for each token. The first field might be the token type and the second field might be the address (if applicable). If the token is a number, the value must be returned

For example:

iden
23

begin

assign

string
12

plus

iden
15

div

number
26437

You mighy (but do not have to) use named constants for your tokens
 final int ident= 1;

 final int while$ = 2;
 final int lessThan = 3; etc.

Be careful, do not use a reserved word as one of your token names list (eg use while$ not while)

STRINGS:

You might keep a string table. When you recognize a string you will place the string in the string table and return the address of the string in the string table. The string table might be an array of strings.

You might also store strings consecutively in a one dimensional array but you would need to return the starting address as well as the length or the index of the last character.

NUMBERS

When a number is discovered its value must be computed

make sure the value does not exceed MAXINT or -MAXINT otherwise your compiler will bomb.

RESERVED WORDS

You might keep a separate table of reserved words and when an identifier is found check this table first. For example, if the word "begin" is found ,first check the table of reserved words then return the token begin. If the word is not on the table of reserved words, then it is an identifier and you must consult the symbol table. An alternate approach, might be to keep the reserved words at the head of the symbol table and check this first. In either case, you might return a

token like begin or while$ or you might return a token resword and its address.

 The first method will probably be easier in the long run.

lDENTIFIERS

For now, before you build the symbol table, you might just return the token iden and print the actual identifier. After the symbol table is built this will need to be modified.

CASE

Since upper and lower case are not distinguishable, you should convert all lowercase characters to upper case.

ERRORS

It will be difficult to modify your compiler if error messages are spread all over your code. It is much better to put all the messages in one place. You might keep all the messages in a file-building the file as you build the compiler. When the compiler starts up, you might read the messages into an array. When an error is detected, call a routine, say ERROR, passing the routine the appropriate message number. For example ERROR(3) might print the message "invalid character". Error messages should be interleaved in the listing version. Also you should set a limit on the number of messages the compiler will generate.

How To Begin

The basic purpose of your scanner is to return the next token to the caller. (The caller will be the parser. How should you begin writing the scanner?

1. Design a finite state machine to model the scanner.

2. Implement your FSM (use a table). This version will assign 0 to the

 second field of the token. Produce a listing file i.e. a version of the program
 with line numbers. You can also do the symbol table simultaeanously.
3. Test this version of your scanner on sample programs which contain no errors.

4. add the string table and a symbol table, if you have not already.
 The symbol table can be an array of objects and you can use a linear search
5. Modify the scanner so that it can handle lexical errors.

6. Your program should prompt the user for an input file.

All input files should end with the extention .pas

7. Your scanner should output a listing file. The listing file has the

 same name as the source file but the extension is .lis

8. For now you might write the token stream to a file called tokens.dat

Here is a typical source file . You should try many variations. Don't worry about syntax now.

Program junk;

Var

 dopey, doc1: integer;

 doc2 : array[10];

Begin

dopey := 1234;

 doc1 := -2341;

if DOPEY >= DoC1 then

 write('What\'s up Doc?');

read(doc2[1]);

End.

For testing your basic algorithm is

while (not end of file source)

{

token = gettoken (call to scanner)

System.out.println(token);

}

It would probably be easier to debug the scanner if you printed the input string along with the tokentype e.g dopey - iden , [- Lbracket , (- Lparen, etc.

The design of your program and even your implementation language is up to you. However, your compiler should be object oriented. In fact, your scanner should be an object. There should probably be a method getToken() which returns a token.

A token should also be an object with two private data fields.

