Assignment0: Mythical Man Month

CS400 Computer Science Capstone

Date Assigned: Winter Break

Discussion date: First Day of Class
PART ONE:

Purchase a copy of

The Mythical Man Month, Fredrick Brooks, Addison-Wesley, 1995, ISBN: 0201835959

Read the first 15 chapters of the book, starting at Chapter 1, “The Tar Pit,” and ending with Chapter 15, “The Other Face.”
Take notes on each chapter, and mark up the text where you find relevant passages. Here’s a link to help you figure out how to read and take notes on a book: http://www.mdx.ac.uk/www/study/Reading.htm
PART TWO:

Prepare for a class discussion on The Mythical Man Month during the FIRST week of the semester. The class discussion will take an entire lecture period. Bring your notes, book, and an open mind. I’ll be asking you questions about material in the book, and I’ll be sharing some of my own experiences that relate to the book. You should be prepared to discuss my questions, raise questions of your own, and share some of your own experiences. Everyone will contribute to the discussion.

Chapter 1:

Why did the author choose the picture for the cover of the book?

How many lines of code do you think you’ve written at Stonehill College?

What is the average annual productivity of a programmer in terms of lines of code? Why is this number so low? Is “lines of code” a useful measurement of producitivy?

What is the difference between programming in the real world an programming in the classroom?

What are some “joys of the craft”?

What are some “woes of the craft”?

Chapter 2:

Programmers are optimists. Why does this cause a problem when programmers generate schedules for a project?

Explain Brooks Law.

How much effort is actually allocated to coding when building a system?

Chapter 3:

Are all programmers created equal?

What is the productivity difference between an OK programmer and a great programmer?

Is there an advantage to hiring a great programmer, even if you have to pay the great programmer more?

Why couldn’t a small team of great programmers build a huge complicated system like OS/360?

Chapter 4:

What is conceptual integrity?

Who is responsible for conceptual integrity? Is this dangerous?

How can implementors participate in the building of a software system and not get bored?

Chapter 5:

Explain these quotes:

“Add little to little and there will be a big pile.” - Ovid

“The second system is the most dangerous system a man designs.”

Chapter 6:

How do architects communicate their vision of the system to the rest of the organization?

Chapter 7:

What is the story of the tower of Babel? Why did Babel fail?

Documentation of a sophisticated system can get very large. How did Brook solve this problem for OS/360?

What is the advantage of a “tree” organizational structure vs. a “flat” organizational structure.

What is the difference between a team lead and a manager?

Chapter 8:

Is lines of code a good measurement of difficulty/complexity?

What non-programming tasks interfere with schedule?

Chapter 9:

Is this chapter relevant?

Chapter 10:

What are some of the main components of documentation in a software project?

Are there any components that you feel are irrelevant?

Why have documentation in the first place?

Chapter 11:

Explain, “plan to throw one away... you will anyhow”.

What software engineering techniques can you use to help deal with an evolving system?

Explain, “Things are at their best at the beginning” – Pascal

Chapter 12:

What are the tools of a modern programmer?

Explain Brook’s concept of a playpen.

Chapter 13:

Some argue that the old technique of “batch debugging” is superior to modern interactive debugging systems. Why?

Which is the best option during system test:

· test only bug free components

· test when bugs are known, but not fixed

· test as soon as components are available

Chapter 14:

How does a project get to be a year late?

What happens when managers are asked to report on the schedule of a project?

Give some examples of clear and fuzzy milestones for a schedule.

Explain the statue picture chosen for this chapter.

Chapter 15:

What does self-documenting mean?

What elements should you have in a self-documented function/module?

PART THREE:

Prepare a three-to-five page feasibility report.

Think back on the hundreds of hours you have spent on programming projects (individual, group, and internship) in which you have been involved as a computer science student.

Look at Chapter 18 (MMM 229-250).

Read the introductory paragraph carefully (MMM 230).

Note the use of the words assertion and proposition. Brooks says that assertions
are “facts and rule-of thumb-type generalizations from experience” that “[he] believed to be true.” Brooks says that most of the propositions listed in the outline following the; introduction “are operationally tested.”

Choose a proposition from the outline (230-250). Be sure you word your chosen proposition as a statement.

Think of yourself in the situation where programmers were applying, should

have been applying, or should not have been applying your chosen proposition.

Pretend a superior has asked you to write a report recommending or not

recommending the application of your chosen proposition from MMM.

(Keep in mind that you are an employee and you are writing to your superior.)

Write an introduction stating the purpose of your report, e.g. to recommend

that the programmers involved in the project you have chosen continue
applying your chosen proposition, consider applying your chosen proposition, or not consider applying your chosen proposition. Include the circumstances under which you are writing this report and any other pertinent information.

(To express your purpose, you should use the infinitive form of the verb; to)

Present background information from the situation you have placed yourself in.
Present reasons for recommending to apply your chosen proposition, continuing to apply it or not to apply it. Evaluate each criterion separately: consider such criteria as cost, availability of staff and financing, equipment, and other relevant requirements.
Write a conclusion that gives your recommendation and brief reasons for making it. Or write a separate conclusion and recommendation.
Propositions from The Mythical Man-Month:

prop·o·si·tion

(pr[image: image2.png]

p[image: image3.png]

 INCLUDEPICTURE "http://img.tfd.com/hm/GIF/schwa.gif" * MERGEFORMATINET [image: image4.png]

-z[image: image5.png]

sh[image: image6.png]

 INCLUDEPICTURE "http://img.tfd.com/hm/GIF/schwa.gif" * MERGEFORMATINET [image: image7.png]

n)
n.
1. A plan suggested for acceptance; a proposal.

2. A matter to be dealt with; a task: Finding affordable housing can be a difficult proposition.
3. An offer of a private bargain, especially a request for sexual relations.

4. A subject for discussion or analysis.

5. Logic

a. A statement that affirms or denies something.

b. The meaning expressed in such a statement, as opposed to the way it is expressed.

6. Mathematics A theorem.

Propositions:

2.8 My rule of thumb is 1/3 of the schedule for design, 1/6 for coding, 1/4 for

component testing, and 1/4 for system testing.

3.7 A chief-programmer, surgical-team organization offers a way to get the

product integrity of few minds and the total productivity of many helpers,

with radically reduced communication.

4.1 “Conceptual integrity is the most important consideration in system

design.”

4.2 “the ratio of function to conceptual complexity is the ultimate test of

system design,” not just the richness of function. [This ratio is a measure

of ease of use, valid over both simple and difficult uses.]

4.3 To achieve conceptual integrity, a design must proceed from one mind or

a small group of agreeing minds.

4.4 “Separation of architectural effort from implementation is a very powerful

 way of getting conceptual integration on very large projects.” [Small

 ones, too.]

4.5 “If a system is to have conceptual integrity, someone must control the

concepts. That is an aristocracy that needs no apology.”

4.6 Discipline is good for art. The external provision of an architecture

enhances, not cramps, the creative style of an implementing group.

4.7 A conceptually integrated system is faster to build and to test.

4.8 Much of software architecture, implementation, and realization can

proceed in parallel. [Hardware and software design can likewise proceed

in parallel.]

13.6 A good top-down design avoids bugs in four ways.

13.10 I find that proper use of a good [quick response interactive debugging] system

requires two hours at the desk for each two-hour session on the machine: one hour in sweeping up and documenting after the session and one in planning changes and tests for the next time.

14.1 A project gets late one day at a time.

14.2
Milestones must be concrete, specific, measurable events defined with knife-edge

sharpness.

14.7 Chronic schedule slippage is a morale-killer. [Jim McCarthy of Microsoft says,

“If you miss one deadline, make sure you make the next one.”]

14.10 The preparation of a critical-path schedule to enable one to tell which slips matter

how much.

14.11 The first chart is always terrible, and one invents and invents in making the next one.

14.12 A critical path chart answers the demoralizing excuse, “The other piece is late,

anyhow.”

14.16 One must have review techniques by which true status becomes known to all

players. For this purpose a milestone schedule and completion document is the

key.

14.17 Vyssotsky: “I have found it handy to carry both ‘scheduled’ (boss’s dates) and

‘estimated’ (lowest-level manager’s dates) dates in the milestone report. The project manager has to keep his fingers off the estimated dates.”

14.18 A small Plans and Controls team that maintains the milestone report is

invaluable for a large project.

15.1 For the program product, the other face to the user, the documentation is fully as important as the face to the machine.
