Software Requirements Document Model

CREDIT: This document model was taken almost verbatim from an excellent software engineering course taught by Vicki Almstrum at the University of Texas at Austin. Almstrum’s models are clear, concise, and detailed. We needed to make some minor editorial changes to make the models compatible with our course and textbook.

· The Software Requirements Document (SRD) sections given in this model are guidelines for the contents of your SRD.

· Include at least these sections, using exactly the section numbering given below.

· Your team may have good reasons for wanting to deviate from this proposed model. In this case, you must get approval from the CEO before writing your document.

· If a section is not applicable in your case, do not delete it; instead, include the topic heading and write "Not applicable".

1. Introduction

Purpose of this section: General background and reference information
1.1 Purpose of this Document

Full description of the main objectives of this document in the context of your project.

Here’s how you should begin this section:

“The purpose of this Software Requirements Document (SRD) is to...”

“In it, we will . . ., . . ., and”

For example:

“The purpose of this Software Requirements Document (SRD) is to describe the client-view and developer-view requirements for the Automated Police Ticketing System (APTS). Client-oriented requirements describe the system from the client’s perspective. These requirements include a description of the different types of users served by the system. Developer-oriented requirements describe the system from a software developer’s perspective. These requirements include a detailed description of functional, data, performance, and other important requirements.”
1.2 Scope of the Development Project

Provides a brief description of your project.

Identifies the product to be developed by name and function, highlights distinct features, lists benefits as clearly and precisely as possible, and lists limitations (if any).

Remember, the scope is the range, breadth, area covered.

Here’s how you should begin this section:

“The scope of . . . (name project) includes its distinct features, its benefits, and its

limitations. Its distinct features are It is intended to (benefits). However, it will not”

For example:

“The scope of the Automated Police Ticketing System (APTS) includes its distinct features, its benefits, and limitations. Its distinct features are:

· lookup of vehicle owner and violations history based on license plate/permit number,

· automated recording and printing tickets,

· synchronization with the existing campus police vehicle violation database.

The APTS is intended to streamline the vehicle ticketing process by:

· giving the officer historical information to aid in the decision to issue a warning or ticket for a first time offender,

· giving the officer historical information to aid in the decision to call for a vehicle tow for frequent offenders,

· reducing the time to issue a ticket in the field with automatic form fill-in based on time, date, and vehicle information from a database

· eliminating the time consuming and error prone process of manually entering paper tickets into the campus police vehicle violation database.

However, the APTS will not:

· replace the current paper ticketing system

· connect, in the field, to the campus police vehicle violation database

· participate in the ticket appeals process”

1.3 Definitions, Acronyms, and Abbreviations

Include any specialized terminology dictated by the application area or the product area. This will help the reader understand the rest of the text. Be sure to alphabetize the terms!

If the section is longer than one page, move it to an appendix and provide a pointer from this section.

Note the use of categorization in the definitions.??? Virginia... what do you mean by this?

For example:

	Term
	Definition. Acronym, Abbreviation

	.Net
	A set of software technologies from Microsoft for connection information, people, and computer systems.

	ATPS
	An abbreviation for Automated Police Ticketing System. This is the name of the system that is being built.

	C#
	A programming languages created by Microsoft. We will be using this language to build the ATPS.

	DB
	An abbreviation for Database.

	MS
	An abbreviation for Microsoft. Microsoft is a large software company which produces the software that will be used to implement ATPS.

	Microsoft Access
	A database software created by Microsoft. The campus police vehicle violation database was created using Microsoft Access.

	PC
	An abbreviation for Personal Computer.

	PDA
	An abbreviation for Personal Digital Assistant. This is a hand held computer similar to a personal computer.

	SRD
	An abbreviation for Software Requirements Document. This is the document you are reading.

	Vehicle Violation Database
	A database containing the history of vehicle violations. The database can be queried by license plate number or permit number.

	WWW
	An abbreviation for the World Wide Web. When you use a web browser, you are accessing the World Wide Web.

1.4 References

Mention books, articles, web sites, worksheets, people who are sources of information about the application domain, etc. Use proper and complete reference notation. Give links to documents as appropriate. If the section is longer than one page, move it to an Appendix and provide a pointer from this section.

There are many ways to document your citations and references. You should use the APA Documentation model (Alred, 2003, p. 144).

Alred, F., Brusaw, C., and Oliu, W. (2003). Handbook of Technical Writing (7th ed.). Boston: Bedford/St. Martin’s.

1.5 Overview of Document

A short yet informative description of how the rest of the SRD is organized and what can be found in the rest of the document. This is not simply a table of contents!! Briefly describe and motivate the various parts!

Here’s how you should begin this section:

“This document contains the following information.”

For example:

“Section one contains:

· a general introduction of the document

· definition of terms used in the document

· references used in the document

Section two contains:

· a client-oriented view of the system

· personas and characteristics of users who will interact with the system

· a high level description of functional, data, and non-functional requirements

· a set of use cases describing how users will interact with the system

Section three contains:

· a software developer-oriented view of the system

· a detailed description of functional requirements including input, processing and output for each major feature

· a detailed description of data requirements

· a detailed description of non-functional requirements”

2. Client-Oriented Requirements
Purpose of this section: high level requirements from client’s perspective
2.1 User Personas

A persona is the profile of a fictional user that represents the intended audience(s) for this product. A persona should share characteristics with real people, but should not directly describe any real person. Taken together, the personas you define should represent as wide a variety of characteristics as possible. For this concept to be effective, your team will use these personas throughout the design and verification process.

Your team will define a minimum of three personas in the SRD. Create the detailed description for each of the personas. Uniquely identify each persona, either with a descriptive label or with a name. If you wish, invent a picture of each persona. For each persona, describe their relevant personal characteristics and their general goals with respect to this product. Be sure that the characteristics that distinguish personas from one another are clear. If the personas are particularly long (e.g. a page or more each), then the detailed descriptions can be moved into an appendix.

For more information on the idea of personas, see:

· the book The Inmates are Running the Asylum by Alan Cooper

· this brief introduction to user personas

· this article on user personas, which includes additional links

· Getting from Research to Personas: Harnessing the Power of Data by Kim Goodwin

· Personas for the S2S Project

For example:

“Campus Police Officer (Melanie): Melanie is a campus police officer with excellent knowledge of the current ticketing system. The college employs her for rotational day and night shifts, including weekdays and weekends. Melanie is comfortable with technology. She uses a computer daily and works with the vehicle violation database to check and edit ticket data. Melanie uses a cell phone and police radio and is interested in using new technologies as part of her job.

Staff (Kendra): Kendra is a newly hired member of the campus police staff. She has no prior experience with ticketing systems. Kendra has formal training in office computer applications including MS Access. She owns a PDA and is enthusiastic about new technologies.”

Ticketing Officer (Vern): Vern is a ticketing officer with basic knowledge of the current ticketing system. The college employs him for weekday parking enforcement. Vern has never used a computer, cell phone, or PDA and he has very little interest in changing the current method of manually writing paper tickets.”

2.6 Use Cases

This section will provide use cases for the product. Use the personas you defined in section 2.1 to make the descriptions concrete. Describe the setting, sketch the possible appearance of the screen(s), give samples of data that is stored, entered, or output, and invent dramatic scenarios that demonstrate the product in operation.

UML use cases and storyboard sketches are excellent descriptive tools for this section.

For example:

“During her shift Melanie, a campus police officer, notices a vehicle without a permit. She would like to see if the car is registered to a member of the community. Using the ATPS she inputs the license plate number and finds out if the car is an unregistered vehicle. If the vehicle is registered, Melanie records and prints a warning ticket. If the vehicle is unregistered, Melanie enters the new vehicle information and records and prints an unregistered violation ticket. At the end of the shift. Melanie brings the ATPS back to the campus police station where the server’s vehicle violation database is updated with new tickets issued and new vehicles encountered.”

Some resources that can assist in developing good use cases include:

· Whatis definition of use cases (with helpful links)

· Alistair Cockburn's site usecases.org

· Use-case model: writing requirements in context (PDF document)

· Object Practitioners Guide to use case modeling

· Top ten use case mistakes

· Use Case Tutorial
2.2 Product Interfaces
· If the product is stand-alone, give the relationship to other products.

· If the product is part of a larger product, then identify its interface to the other products.

· Identify the product's external interfaces with its environment.

· If the product uses existing hardware, describe the hardware.

· If the product requires new hardware, give a detailed explanation of the hardware.

For example:

“The ATPS automates the ticket writing process. Instead of writing paper tickets in the field, officers can use the ATPS to query vehicle history, automate ticket entry, print tickets, and synchronize with the existing vehicle violation database.

The ATPS interfaces with several hardware components:

· PDA: HP IPAQ Pocket PC H2215 PDA with 64MB RAM. The PDA will be carried by the officer in the field.

· Printer: Brother MW 100/129/140BT Mobile Printer. The printer will be carried by the officer in the field.

· Bluetooth: Bluetooth wireless network protocol. The bluetooth protocol will enable the PDA to communicate with the printer.

· Server: Gateway Windows/XP personal computer. The server is the existing computer used by campus police to store the vehicle violation database.

 The ATPS interfaces with several software components:

· ATPS Ticketing Application which runs on the PDA. This is the application officers will use to issue tickets in the field. We will be writing this application.

· MS Access database which runs on the PDA. This is the PDA’s local copy of the vehicle violation database. Created automatically by Active Sync.

· MS Access database which runs on the Server. This is the campus police vehicle violation database.

· Active Sync which runs on the Server. This tool will synchronize the server’s vehicle violation database with the PDA’s copy of the database.”

2.3 Functional Requirements

A short description of the functions to be performed by the software, i.e. what the product should do. This description must be in a form understandable to clients and users.

The detailed requirements specifications are left to Section 3.2 in this SRD. Use bullets for your list. Be sure the requirements are in parallel form. Label the requirements in a systematic manner to make it easier for you to refer to them in Section 3 of the SRD and future documents. The label should indicate if the feature is required (R), desired (D), or optional (O).
This section should not be design-oriented, a common mistake. Talk about what the product will DO... the products main features... not HOW the product will implement the features.

For help in gathering requirements, see, for example:

· Write user-centred requirements specifications from the Standish Group

· CS370 project on Requirements Capture

For example:

“ATPS will automate the ticket writing process by meeting the following functional requirements:

· FR0(R): The system will allow the user to lookup of vehicle owner information based on license plate number. This information will contain owner’s permit number, assigned lot, and previous violations including tow history.

· FR1(R): The system will allow the user to issue a ticket. The ticket information will be issued in electronic and paper form.

· FR2(R): The system will automatically fill in data fields using vehicle owner information should a ticket need to be issued.

· FR3(R): The system will allow the user to update a ticket after the ticket has been issued.

· FR4(R): The system will allow the user to delete a ticket after the ticket has been issued.

· FR5(D): The system will keep the user’s ticket information and the server’s vehicle violation database synchronized to within 24 hours.

2.4 Data Requirements

Describe data that are input or output from the product as well as any data that are stored within the system for example in files or on disc. This section should only cover data requirements from the client's perspective. Once again, this should not be design-oriented.

Requirements should be grouped into input requirements and output requirements. Each requirement should begin with a header indicating the direction of information flow. Label the requirements in a systematic manner to make it easier for you to refer to them in Section 3 of the SRD and future documents.

For example:

“ATPS will automate the ticket writing process by meeting the following data requirements:

Input Requirements:

DR0(R): Server Vehicle Violation Database -> PDA Vehicle Violation Database: Each PDA running ATPS will have a local synchronized copy of the server’s vehicle violation database.

DR1(R): PDA Vehicle Violation Database -> ATPS: The PDA’s vehicle violation database will provide most of the data that drives APTS. The database contains information about vehicle owners and previous violations.

DR2(R): User -> ATPS: The user will provide some basic ticket information to ATPS including: username and password, license plate number, lot number, violation type, and optional comments. The rest of the information needed to issue a ticket will come from the vehicle violation database. If the vehicle is not found in the vehicle violation database, then the user will also provide the vehicle’s state, make, and model.

Output Requirements:

DR3(R): ATPS -> PDA Vehicle Violation Database: The ATPS will update the vehicle violation database as new tickets are issued and when new vehicles are encountered.

DR4(R): PDA Vehicle Violation Database -> Server Vehicle Violation Database: At the end of a shift, the user will synchronize the PDA vehicle violation database with the server’s vehicle violation database.

DR5(R): ATPS -> Printer: When a new ticket has been issued, ATPS will send a bluetooth command to the printer to print the ticket.”

2.5 Non-Functional Requirements
This section describes non-functional requirements, those factors that impose constraints on the implementation of the software product. This can include the following categories:
· interface (user, hardware, software),
· physical environment,
· performance (response time, throughput, resource utilization),

· security,

· quality,

· organizational policies,

· standards compliance

Label the requirements and organize in a systematic manner to make it easier for you to refer to them in Section 3 of the SRD and future documents.

For example:

“ATPS will automate the ticket writing process by meeting the following non-functional requirements:

2.5.1.1 Interface:User:

2.5.1.2Interface:Hardware:

· NFR1(R): The system will print tickets on a Bluetooth enabled printer.

2.5.1.3 Interface:Software:

· NFR0(R): The system will only work with the Pocket PC operating system.

2.5.2 Physical Environment:

· NFR8(D): The system hardware will not encumber the officer in the field.

· NFR9(D): The system display will be readable in all types of weather, including bright sunlight.

· NFR10(R): The system hardware will be useable in all types of weather, including heavy rain, extreme heat, and bitter cold.

· NFR11(D): The system hardware will be useable for a user’s entire shift without the need to recharge batteries.

· NFR12(O): The system will produce paper tickets that are readable in all types of weather, including heavy rain.”

2.5.3.1 Performance: Response Time

· NFR5(R): The novice user will be able to create and print a ticket in less than 5 minutes.

· NFR6(R): The expert user will be able to create and print a ticket in less than 1 minute.

2.5.3.2 Performance:Resource Utilization

· NFR2(R): The local copy of the vehicle violation database will consume less than 20 MB of memory

· NFR3(R): The system (including the local copy of the vehicle violation database) will consume less than 50MB of memory

2.5.4 Quality
2.5.5 Security
· NFR7(R): The system will only be usable by authorized users.

2.5.6 Organizational Issues
2.5.7 Standards Compliance

· NFR4(R): The system will conform to FERPA guidelines to maintain student privacy.

3. Developer-Oriented Requirements

Purpose of this section: Technical information needed to design the software
3.2 Functional Requirements

This section must be customized to reflect the particular needs of your project. The first section should always be a presentation of the template that your team will use in defining the functional requirements. The exact categories that you use in your template will depend on the approach you are taking to your design.

3.2.1 Template for describing functional requirements

This is a typical template you can use to describe each of the functional components that were identified in Section 2.3. These sections should be at least the following:

	purpose
	a description of the functional requirement and its reason(s)

	inputs
	which inputs; in what form/format will inputs arrive; from what sources input will be derived, legal domains of each input element

	processing
	describes the outcome rather than the implementation; include any validity checks on the data, exact timing of each operation (if needed), how to handle unexpected or abnormal situations

	outputs
	the form, shape, destination, and volume of the output; output timing; range of parameters in the output; unit measure of the output; process by which the output is stored or destroyed; process for handling error messages produced as output

3.2.2 through 3.2.x

The description of each functional requirement, using the template your team defines in section 3.2.1

For Example:

· FR0: The system will allow the user to lookup of vehicle owner information based on license plate number. This information will contain owner’s permit number, assigned lot, and previous violations including tow history.

· FR1: The system will allow the user to enter a new vehicle into the vehicle violation database.

· FR2: The system will allow the user to issue a ticket. The ticket information will be issued in electronic and paper form.

· FR3: The system will automatically fill in data fields using vehicle owner information should a ticket need to be issued.

· FR4: The system will allow the user to update a ticket after the ticket has been issued.

· FR5: The system will allow the user to delete a ticket after the ticket has been issued.

· FR6: The system will keep the user’s ticket information and the server’s vehicle violation database synchronized to within 24 hours.

3.2.2

	purpose
	The system will allow the user to lookup vehicle owner information based on license plate number.

	inputs
	The license plate number will be entered through a user interface on the PDA. The license plate number will contain the following information:

· any combination of letters, numbers, and dashes

· state or province (default Massachusetts)

· country (default United States)

To prevent input errors, the state/province and country information will be selected from drop down lists.

To ease input, the state/province drop down lists will contain the most common states first (Massachusetts, Rhode Island, Connecticut, New Hampshire, Vermont, Maine, New York), followed by all states and provinces listed in alphabetical order.

The country drop down list will contain the following countries: United States, Canada, Mexico

	processing
	The license plate number will be used to lookup vehicle owner information in the PDA’s copy of the vehicle violation database. If the vehicle is not found, it can be added to the database (see 3.2.3).

	outputs
	the form, shape, destination, and volume of the output; output timing; range of parameters in the output; unit measure of the output; process by which the output is stored or destroyed; process for handling error messages produced as output

3.2.3

3.2.4

3.2.5

3.2 Data Requirements

This section expands upon the descriptions in Section 2.4.

Sections 3.3 – 3.x organize the product’s non-functional (and non-data) requirements. These sections expand upon the descriptions in Section 2.5.
3.3 Interface: User Requirements
Requirements levied against the product from a users/usability/human factors point of view
3.3 Interface: Hardware Requirements

Requirements levied against the product from a hardware hardware (cpu, memory, disk, network, etc.) point of view

3.4 Interface: Software Requirements

Interfaces with other software components or products, including other systems, utility software, databases, and operating systems.
3.3 Performance Requirements

Issues such as number of connections to the system, number of simultaneous users, response time, number of files, size of files and tables, number of files, size of files and tables, number of transactions per interval (all defined in terms of acceptable ranges)

…

· Appendix:

Primary references used in preparing this outline:

· Software Engineering Fundamentals by Ali Behforooz and Frederick J. Hudson (Oxford University Press, 1996).

· Software Engineering, A Programming Approach by Doug Bell, Ian Morrey, and John Pugh (2nd Edition, Prentice Hall, 1992).

· Personas, Geoff Glaze, October 18, 1999; based on the book The Inmates are Running the Asylum, Alan Cooper,

PAGE
15

