CSC 202 - Discrete Math for Computer Scientists II
Professor Shai Simonson

Assignment 1 – Sets, Set Algebra, and Applications to Computer Science

A.  Applications of Sets

Assume a universal set of 8 elements. Given two sets A and B, each represented by 8 bits, explain how to use bitwise and/or/not operations, to:

1. Extract the rightmost bit of set A.
2. Make the odd numbered bits of A equal 0. (The convention is to number the bits from right to left as 0 to 7).
3. Make bits 4-6 of A equal to 1.
4. Determine if A  B.
5. Extract A  B.

B.  More Applications of Sets

The Inclusion/Exclusion Theorem for two sets states that for any two sets, A and B,

|A  B | = |A| + |B| – |A  B|.  

Note that the converse of this theorem is, in general, not true! That is, it is possible to have positive integers that satisfy this equation, but not have two sets with appropriate cardinalities for each expression. For example, let the values of |A  B|, |A|, |B|, |A  B| be 40, 60, 10, and 30 respectively. Although 40 = 60 + 10 – 30, there is no way to have 30 elements in |A  B| and only 10 elements in B!

The Inclusion/Exclusion Theorem for three sets states that for any three sets, A, B and C,

|A  B  C | = |A| + |B| + |C| –  |A  B| – |A  C| – |B  C| + |A  B  C|.  

Given a set of 29 students, where:
8 	students need housing and financial aid,
12 	students need housing, financial aid, and an e-mail account,
17 	students need an e-mail account and financial aid, 
23 	students need housing, 
20	students need financial aid, 
19 	students need e-mail accounts, and 
4 	students don’t need anything.  

1. How many students need both housing and e-mail?  
2. Change the numbers above to 57, 8, 3, 21, 21, 32, 31, 8.  What is your answer now?
3. Which answer is bogus and why?
4. Prove the general Inclusion-Exclusion Theorem for n sets, by induction.  To illustrate your general proof, you may assume the theorem works for n equals 1 through 4, and prove it for n = 5.

C.  Induction Proofs

1. Generalize De Morgan’s laws for n sets and prove the laws by induction.
2. The power set of A is the set of all subsets of A.  Prove by induction on the size of the set, that the power set P(A) has cardinality 2|A|.

D.  Countability Proofs and Functions

1. Prove that the set of integers has the same cardinality as the set of positive integers.
2. Prove that the set of all quadruples of positive integers is countable. A quadruple is an ordered 4-tuple (a,b,c,d) where the letters are positive integers.  Hint:  Use the fact that positive rational numbers are countable.
3. Prove that the set of all C++ programs is countable.  
4. Section 2.3 – 10, 12, 13, 14, 20.
5. Section 2.5 – 1, 2, 16, 17.

E.  Undecidable Problems

Consider any computer program that takes other programs as input, and outputs yes or no based on some criterion, (a compiler or interpreter, for example).  It is possible for such a program to be fed back into itself, and depending on the program, it might either say yes (for example, a C++ compiler written in C++) or no (for example, a C++ compiler written in Java). 

Define the programs that say no to themselves as self-hating programs. (This is not how we defined self-hating programs in class.)  Now, assume that there is a computer program called Hater that takes other programs as input and says yes to all the self-hating programs, and no otherwise.

1. Assume that Hater never runs forever on an input. Analyze what happens when Hater is input to itself.  Is such a Hater possible?

2. Now consider the possibility that Hater might run forever answering neither yes nor no on some input, and reanalyze the paradox of running Hater on itself.  Is such a Hater possible?

3. Finally, redefine self-hating to mean that a program does not say yes to itself.  (This is the definition we used in class). That is, a program is self-hating if and only if it says no to itself or it loops forever on itself.  Once more, consider running Hater on itself and determine whether Hater is possible.

