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The Hebrew Mathematical Tradition 
 

Part One (Y. Tzvi Langermann) 

Numerical Speculation and Number Theory.  Geometry. 

 

Part Two (Shai Simonson†*) 

The Evolution of Algebra 

  

 

1.  Numerical Speculation and Number Theory.  Geometry. 

 

In this part, we look in detail at the arithmetic and numerology of Abraham Ibn 

Ezra.  We continue with a broad description of Hebrew contributions in geometry.  In part 

two, we shift the focus to algebra, and its evolution from a geometric to a combinatorial 

subject, as seen in the works of Levi ben Gershon and Abraham Ibn Ezra. 

 

1.1  Numerical Speculation and Number Theory  

 

 Abraham Ibn Ezra (1092-1167) is the central figure in the Hebrew mathematical 

tradition. It was he who wrote what is probably the most influential Hebrew treatise on 

arithmetic, Sefer ha-Mispar (Book of the Number); inter alia, that book seems to have 

played an important role in the transmission of the Hindu-Arabic numerals to the west.  In 

addition, it was he who, by means of some enticing, cryptic remarks in his biblical 

commentaries, suggested a deep mathematical interpretation for some fundamental 

religious concepts.  His commentaries were very widely read; they engendered a flock of 

supercommentaries whose authors did their best to spell out in full the ideas which Ibn 

Ezra only hinted at. Ibn Ezra also wrote Sefer ha-Ehad (Book of the One), an 

arithmological1 monograph, and Sefer ha-Shem (Book of the Name), a reflection upon the 

divine names in which some mathematical themes are developed as well. 

 

 Ibn Ezra's most significant musings as found in a few excursuses from his verse by 

verse explication of the Torah.  Let us look at one of these, which is found in his remarks to 

Exodus 33:21.  The properties of the tetragrammaton YHWH are discussed; and the 

numerical values of the letters of the Hebrew alphabet (Y=10; W=6; H=5) are the basis for 

Ibn Ezra's observations.  We shall translate the text phrase by phrase, elaborating within 

square brackets upon the extremely terse wording; we readily acknowledge our debt to 

some supercommentaries written in the  fourteenth century. 
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 “Said Abraham, the author.  I have already commented upon the name that is 

written but not pronounced.  It is a proper noun [shem ha-esem, literally, “the name of 

identity”], and its identity is the glory.  When you add up all of the letters, it amounts to 72.  

[The sum here is: Y+YH+YHW+YHWH = 10+15+21+26 = 72.]  This why our sages said 

that it is the ineffable name.  [In fact, it seems that the notion of a name composed of 72 

letters is post-Talmudic.]  If you add the square of the first to the square of the middle, in 

truth it is like the number of the Name.  [The squares on the first number, 1, and on the 

middle of the first ten digits, i.e. 5, add up to 26, which is also the sum of the numerical 

values of YHWH.] Likewise the conjunctions of the five planets.  [There are 26 possible 

combinations of the five planets, taken five, four, three, or two at a time.]  So also, if you 

add up the letters which a person pronounces in half of the Name, they are equal to the 

number of the Name.  [If one pronounces the first letters, yod—written YWD, and 

numerically equivalent to 20, and he, written HA and numerically equivalent to 6, then they 

too add up to 26.]   If you take the sum of the squares of the even numbers of the first 

grade, it is equal to the collective sum of the half of the name.  [22 + 42 + 62 + 82 =120 = 

1+2+3+ ....+15; 15 is the value of YH, which is half of the Name.]  If you multiply half of 

the Name by the other half, the result is the [sum of the] squares of the odd numbers [of the 

first grade]. [YH.WH=15.11=165=32 +52 +72 +92.]  If you subtract the square on the first 

from the square on the [first] two, the result is the cube on the second letter. [The square on 

the first letter, Y=10, is 100; and the square on the first two letters, YH=15, is 225; their 

difference is 125, the cube on the second letter, H=5.]   And if you subtract the square on 

the first two from the square on the first three, the result is the cube on the third letter.  [The 

square on the first three letters, YHW=21, is 441; and 441-225=216=63.]  This Glorious 

Name is the One which is self-standing.  It does not require anything before it.  For if you 

look at it from the aspect of counting, where it is the beginning of the All, and all counting 

derives from ones, [then] it is the one which is the All.” 

 

 It is important to define as precisely as we can the type of “number mysticism’ 

which Ibn Ezra practices.  Clearly, he is drawing upon the neopythagorean tradition, in 

particular, the work of Nicomachus of Gerasa (second century), whose widely repercussive 

Introduction to Arithmetic devotes considerable attention to series and their sums.  As we 

have just seen, this is just the type of mathematical insight which appeals to Ibn Ezra.  

Moreover, “the All” is an important neoplatonic concept; and neoplatonic cosmology often 

went hand in hand with neopythagorean numerical speculations. 

 

  In particular, it is crucial to distinguish between Ibn Ezra's enterprise and the very 

popular hermeneutical exercise known as gematriah.  The latter find deep secrets in the 

numerical values of Hebrew words.  Ibn Ezra unequivocally distances himself from the 

practice, for example, in his explication of Genesis 14:14, which narrates Abraham's 

mobilizing his 318 interns in order to rescue his nephew Lot.  In his commentary to the 

verse, Ibn Ezra takes the bold step of rejecting a Talmudic homily (Nedarim 32a) which 

asserts that the 318 interns refer to just one person, Abraham's faithful slave Eliezer, since, 

in gematriah, ALY‘ZR=318.  He states emphatically, “Scripture does not speak in 

gematriah.”  
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 According to the practitioners of gematriah, secrets are contained in the words and 

letters of the Hebrew alphabet; arithmetic is a tool for ferreting out these secrets.  In Ibn 

Ezra's view, the matter is reversed: it is number which contains the secrets, and the Hebrew 

spellings reflect the deep meaning which these numbers have.  Thus, for example, the 

divine names YHWH and AHYH (pronounced eheyeh, it is the “I am that I am” of Exodus 

3:14) are spelled with the letters which stand for the numbers 1, 5, 6, and 10, precisely 

because these numbers have tremendous mathematical import. As Ibn Ezra explains in the 

third chapter of his Sefer ha-Shem, the number one is “the cause of all number, but is not 

itself a number.”  Ten resembles one, since it is both the end of the units and the beginning 

of the “tens”.  Moreover, 5, 6, and 10 all share this property in common: all powers of these 

three numbers will maintain in the final digit the same final digit which they have in the first 

power.  (So, e.g. 52=25, 53=125, and so forth).  As it seems to me, the key concept here is 

cyclicity or replication, an idea which resonates well with the Pythagorean concept that 

numbers are the building blocks of creation.  The other properties of these letters, their 

shapes, and their application in Hebrew grammar, all ramify from their peculiar 

mathematical characteristics in the base ten system. 

 

 Ibn Ezra was interested primarily in numbers rather than shapes;  he specialized in 

arithmetic, not geometry.  He was expert in astronomy and, accordingly, he was well-

versed in geometry, as every astronomer must be.  He seems to have regarded the circle as 

a sacred form.  The Hebrew letter yod, which stands for the number ten, has the shape of a 

semi-circle, “to indicate the whole [circle].  The reason is, that it encircles the All” (Sefer 

ha-Shem, ch. 3).  In his shorter commentary to Exodus 26:37, he depicts the candelabrum 

in the Tabernacle as semicircular; this unusual explication must also be traced to the 

meaning which he finds in that geometric form.  One passage which Ibn Ezra included both 

in his commentary to the Torah (ad Exodus 3:14) and, with some elaboration, in his Sefer 

ha-Shem (chapter 6),  Ibn Ezra tied together the special properties of the circle and the 

number of ten.  As usual, his remarks are laconic and cryptic, which amplified the interest 

which they generated.  Isaac Israeli, the eminent fourteenth-century astronomer, and 

Mordecai Comteano, the fifteenth century Byzantine polymath, both spelled out the 

theorem which Ibn Ezra only hinted at.  With the aid of simple modern algebra, the purpose 

of Ibn Ezra's construction is readily perceived. 

 

 The passage reads as follows (in the commentary to Exodus): “If make the diameter 

of the circle equal to this number [ten], and draw a chord in its third, then the number of the 

isosceles triangle will be equal to the number of the perimeter, and so also the rectangle 

within the circle.”  In Figure 1, the diameter AB is assigned the number 10. Chord CD cuts 

off one-third of the circle, as does chord EF.  Ibn Ezra asserts that the area or “number” of 

triangle ACD = rectangle EFDC. This is easily proven.  Right triangles ECI and JIA are 

equal, as are right triangles FDK and JKA.  The trapezium CIKD is common to triangle 

ACD and rectangle EFDC.  Adding to the trapezium triangles ECI and FDK produces the 

rectangle, and adding their equal, i.e. triangles JIA and JKA produces the triangle ACD. 

Hence triangle ACD = rectangle EFDC. 

 

 This “number”, in turn, is said to be equal to the perimeter of the circle, provided, 

we recall, that the length of the diameter has been given as 10.  To be sure, the “numbers” 
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of the triangle and rectangle are in square units, whereas the perimeter is a linear measure;  

but Ibn Ezra is interested only in the number, not in what it measures. Now if we call the 

diameter d, then GH = d/6 and GD = d/2.  Applying the Pythagorean theorem, we find that 

HD = (d2)/3, so CD = (2d2)/3, and the area of rectangle EFDC = (2d22)/9.  The 

perimeter is d.  Since, as emphasized above, we are interested only in the “numbers”, we 

set the perimeter equal to the area of the rectangle; after dividing through by d, we are left 

with  = (2d2)/9.  Simple computation (on a pocket calculator) shows that (22)/9 is 

approximately equal to 0.314.  Hence, only when d = 10 will the rectangle yield a fairly 

good approximation to .   This, we believe, is the property which Ibn Ezra wished to 

demonstrate. 

 

 Like other pre-modern mathematicians, Ibn Ezra regarded neither zero nor one to 

be numbers. Zero serves only as a place-marker in decimal notation; and one is the primal 

source from which numbers are generated.  Thus the first true number is two.  As he states 

in his Sefer ha-Ehad, “two is the beginning of all number.”  Nonetheless, here and there in 

his mathematical writings, Ibn Ezra treats both zero and one just as he would any other 

number.  We have already seen that he groups together the zero in 10 along with 5 and 6 

when noting that all three are preserved in successive powers of their respective numbers.  

As for one: among the first properties listed in Sefer ha-Ehad are the facts that one is 

“square root and cube root, square and cube.”  However, at the beginning of the seventh 

chapter of his Sefer ha-Mispar, he offers a prosaic explanation for one being equal to its 

own square, namely, that the squares of fractions are less than their roots, and the squares 

of whole numbers are greater.  On the other hand, it is noteworthy that Ibn Ezra—in 

contravention of the arithmological tradition—does not include a chapter on the number ten 

in his Sefer ha-Ehad.  True, Sefer ha-Ehad is concerned almost exclusively with 

mathematics and, as Ibn Ezra states at the end of the chapter of the one, “computation with 

the ten resembles that of the one”.  In other words, with the number ten, we have simply 

moved into the next grade or power of numbers.  Nonetheless, astrological, cosmic, and 

other meanings are adduced in Sefer ha-Ehad (especially in connection with the number 4), 

and moreover, the arithmological tradition—and Ibn Ezra's own religious musings, as we 

have seen above—attaches considerable significance to the number 10.  Ibn Ezra's decision 

to omit this number from his arithmology demonstrates, at the very least, that he took the 

conformity of the one to the ten very seriously indeed. 

 

1.2 Geometry 

 

 The branch of mathematics in which Jews applied themselves most diligently was 

geometry.  There are a number of possible explanations why this was so.  First, geometry 

was intimately connected with logic, especially logical demonstration.  In the medieval 

period, algebraic rules were often merely illustrated by way of numerical example;  but 

geometrical propositions—including those that are the equivalent of such basic algebraic 

formulae as the binomial expansion—were proven rigorously.  Indeed, geometrical 

demonstration in some ways represented to thinkers of the period the pinnacle of scientific 

certainty, and ideal which other branches of learning could strive to emulate but, in general, 

not attain. 
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 Closely connected to this is the fact that many of the basic concepts of medieval 

natural philosophy, including some notable notions which were of crucial significance for 

theology, were debated within a geometrical context.  The very intricate (and as yet 

unstudied) discussions in Levi ben Gershon's commentaries on Averroes' Physics (who, in 

turn, is commenting upon Aristotle) are part of this tradition.  Theologians generally agreed 

that the deity was the infinite, unbounded, noncorporeal mover of a finite and corporeal 

universe.  Notions such as infinity, motion, and even corporeality were analysed 

geometrically. Hebrew theological tracts very often contain geometrical proofs connected to 

some of these notions.   

 

 Finally, we should take note of the close connection between geometry and 

astronomy.  The Hebrew tradition in astronomy was very strong;  and astronomers used 

geometrical models to describe the planetary motions.  A sound education in geometry was 

requisite for any serious study of astronomy. 

 

 The corpus of Hebrew geometrical writings consists almost exclusively of 

translations.  At first this may appear a bit strange: why are there not a few works on 

arithmetic, and even some on algebra, but almost none in geometry?  The simple answer is 

that Hebrew scholars, like those throughout West and a good part of the East, relied upon 

the great synthesis of Euclid.  The Elements were translated from the Arabic into Hebrew, 

along with the commentaries of al-Farabi and Ibn al-Haytham, and a number of glosses 

which explained differences between the two Arabic translations (by Thabit and al-Hajjaj).  

A smaller number of Arabic writings connected to the Elements (including the Arabic 

translation of the Elements itself) were transcribed into the Hebrew alphabet but not 

translated.  Euclid's short optical treatises were also available in Hebrew, as were some 

writings of Archimedes and Eutocius.   

 

 There exist as well a few precious codices containing unique Hebrew translations of 

geometrical tracts—in some cases, the only surviving copy of a thread in geometrical 

thinking which occupied Hellenistic and Arabic as well as Jewish mathematicians.  These 

manuscripts are a blessing for historians of mathematics; and they also tell us something 

about the cultural priorities of the medieval Jewish communities.  The most important 

codex of this type is ms Oxford-Bodley d. 4 (Neubauer and Cowley 2773).  Much like a 

modern university professor, worried that one shoddy piece of work could destroy a 

reputation established by years of hard work, the translator, Qalonymos ben Qalonymos (d. 

after 1329) appended a personal note begging the indulgence of his readers, and informing 

them that he was forced to work quickly and from a defective manuscript, so eager was his 

patron to obtain a Hebrew copy. Mss. Hamburg, Levi 113, and Milan, Ambrosiana 97/1, 

are two other noteworthy codices. 

 

 A few distinct topics generated particular interest, and around them there evolved a 

distinct Hebrew tradition.  Perhaps the most important of these is the corpus of 

demonstations of the property of an asymptote to a curve.  Maimonides, in his Guide of the 

Perplexed, part 1, chapter 73, noted the asymptotes to the hyperbola, whose properties are 

demonstrated by Apollonius in his Conics. Maimonides studied the Conics in Arabic.  

However, that text was never translated into Hebrew, and Hebrew readers of the Guide 

required an independent demonstration of this particular property.  In fact, the notion that 
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two lines could continuously approach each other without ever meeting stimulated thinkers 

in other cultures as well.  In addition to Apollonius' discussion (for those with access to this 

Conics and the necessary background in order to understand it), Nichomedes' proof 

utilizing the conchoid was studied, and some original proofs based on Euclid were 

expounded.  However, it seems that, in the wake of Maimonides' statement, Jewish 

mathematicians applied themselves to this problem with particular vigor.  At least six 

distinct proofs are presented in the Hebrew literature (Lévy, 1989).  Although the passage 

from the Guide was the immediate stimulus, interest in this issue finds its place in larger 

movements in cultural history; these have been explored by Freudenthal (1988). 

 

 Another interesting and hitherto unexplored Hebrew tradition is comprised by the 

texts on spherical geometry (often called sphaerics for short).  Mastery of this branch of 

geometry was a necessary prerequisite for serious students of astronomy.  However, the 

codicological evidence—by which I mean the existence of numerous codices exhibiting 

similar features and transmitted independently of astronomical writings—suggests that 

there was considerable interest in sphaerics from the point of view of pure mathematics. At 

the core of this tradition are two Hellenistic texts, treatises on the sphere written by 

Menelaos and Theodosios.  The Hebrew versions were—as was the case nearly always2—

translations from the Arabic. Short tracts by Jabir ibn Aflah and Thabit ibn Qurra on 

transversals are often included.  Occasionally some other relevant materials are included; 

for example, the Milan codex cited above contains some lengthy and unstudied 

commentaries. 

 

 What gives this tradition its coherence and uniqueness are the extensive glosses that 

are found in the margins of most manuscripts.  Most of these are initialed; the signatures 

have not been deciphered.  Many are signed by the Hebrew letters dalet and tav, which 

may mean divrei Thabit (“the words of Thabit”) but also divrei talmid (“the words of a 

student’). 

 

 Hebrew scholars were not on the whole as excited by the quadrature of the circle as 

were their Latin counterparts.  There exists but a single Hebrew monograph on the subject, 

written by a certain “Alfonso” who, recent scholarship suggests, is none other than the 

fourteenth century apostate and philosopher, Abner of Burgos.  Unfortunately, his treatise, 

Meyashsher ‘Aqov (“Straightening out the Crooked”) survives in only one, incomplete 

copy.  Alfonso clearly realized that squaring the circle is impossible within the framework 

of conventional, Euclidean geometry;  he set as his goal the description of some sort of 

“higher reality” where this would be possible.  The surviving fragments establish the 

philosophical and mathematical foundations upon which, presumably, this “higher reality” 

is constructed.  The subtlety and erudition displayed in this treatise are in a class by 

themselves, and it is a pity that the complete treatise is not extant. 

 

 By way of Aristotle, Jewish scholars were acquainted with one of the earliest Greek 

attempts at a solution, namely Hippocrates' quadrature of the lunule (a crescent shaped 

figure constructed from two circles).  According to Aristotle, Hippocrates thought that his 

                                                 
2There are a few instances of direct Hebrew translations from the Greek, for example, a passage 
from Pappus (Langermann, 1996, p. 52). 
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successful squaring of the lunule indicated that the entire circle could be squared; and the 

Stagirite made use of this as an example of faulty reasoning.  About half a dozen Hebrew 

manuscripts contain various reconstructions of Hippocrates' proof, usually as glosses to 

Aristotle or his commentators. 
 

 

2.   The Evolution of Algebra 

 

We present an in depth look at Hebrew medieval algebra by examining some of the 

work of Rabbi Levi ben Gershon (1288-1344) and Rabbi Abraham ben Meir ibn Ezra 

(1090-1167). 

 

When we say algebra, we mean the study of solutions of equations, and polynomial 

identities.  In ancient times, this was intrinsically tied up with geometric notions.  The 

connection of algebra with geometry is prominent in Greek mathematics, and continues in 

the geometric proofs of the algebraic results of Islamic mathematicians.  Eventually, this 

dependence disappeared, and the full power of algebra came to bear with symbolic notation 

and combinatorial identities. 

 

When one looks at the history of algebra, by concentrating on results, it seems to 

have made little progress for over 3000 years, and then a sudden leap.  After all, the 

solutions to linear and quadratic equations were well known to the Babylonians, and the 

solution to the general cubic equation did not come until the Renaissance.  Throughout 

these 3000 years, the Greeks, Indians, Chinese, Moslems, Hebrews and Christians, seem to 

be doing no more than presenting their own version of solutions to linear and quadratic 

equations, which were well known to the Babylonians.  Diophantus,  Bhaskara, Jia Xian, 

al-Khwarizmi, Levi ben Gershon and Leonardo of Pisa, all provide examples of this. 

 

However, the history of algebra is of course more subtle than that, with small 

changes accumulating slowly.  There were many concepts which needed to mature before 

the breakthrough in algebra was ready to occur.  Independence from geometry, a 

comfortable symbolic notation, a library of polynomial identities, and the tool of proof by 

induction, were all stepping stones in the history of algebra.  Hence what at first seems like 

new presentations of the same old stuff, needs to be considered more carefully.  

 

To this end, to appreciate this particular view, it is useful to focus upon the 

liberation of algebra from its geometric roots, and its subsequent connection with 

combinatorics.  Our intention here is to present the algebra of Levi ben Gershon and 

Abraham ben Meir ibn Ezra, and to argue that although their results were perhaps already 

well known, their approach represents an evolution of algebra from a geometric subject to a 

combinatorial subject.   

 

2.1  Levi ben Gershon and Masseh Hoshev 

 

Levi ben Gershon (1288-1344), rabbi, philosopher, astronomer, scientist, biblical 

commentator and mathematician, was born in Provence (South France) and lived there all 

his life.  Through his writings, he distinguished himself as one of the great medieval 
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scientists and a major philosopher.  He wrote more than a dozen books of commentary on 

the Old Testament, a major philosophical work MilHamot Adonai (Wars of God), a book 

on logic, four treatises on mathematics, and a variety of other scientific and philosophical 

commentaries.  MilHamot Adonai has a section on trigonometry and a long section on 

astronomy, including the invention of the Jacob’s Staff, a device to measure angles between 

heavenly bodies used for centuries by European sailors for navigation, a discussion of the 

camera obscura, and original theories on the motion of the moon and planets.  A complete 

bibliography on Levi and his work can be found in [Ke92]. 

 

Levi was highly regarded by the Christian community as a scientist and 

mathematician.  He is referred to by them as Leo Hebraus, Leo de Balneolis or Maestro 

Leon.  However, despite his originality and reputation, much of Levi’s scientific and 

mathematical work did not heavily influence his successors.  It is not clear to what extent 

he played a role in the transmission of Hellenistic mathematics from the Arab world to 

western Europe.    

 

Levi’s Mathematics 

 

Levi’s mathematics comprises four major works.  

 

1.  Maaseh Hoshev,  Levi’s first and largest mathematics book is extant in two editions, the 

first completed in 1321, and the second in 1322 [Si00a].  It is known best for its early 

illustrations of proofs by mathematical induction [Ra70]. 

 

2.  A commentary on Euclid was completed in the early 1320’s, with ready access to 

Hebrew translations.  Included is an attempt to prove the fifth postulate. 

 

3.  De Sinibus, Chordis et Arcubus, a treatise on trigonometry in MilHamot Adonai, was 

completed in 1342 and dedicated to the Pope. 

 

4.  De Numeris Harmonicis, completed in 1343, was commissioned by Phillip de Vitry, 

Bishop of Meaux, and immediately translated from Hebrew into Latin.  Philip was a 

musicologist interested in numbers of the form 2n3m  called harmonic numbers.  Levi 

proves that the only pairs of harmonic numbers that differ by one are (1, 2), (2, 3), (3, 4) 

and (8, 9).  The book is relatively short and the original Hebrew is lost. 
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Maaseh Hoshev, The Art of Calculation 

 

Maaseh Hoshev, The Art of Calculation, is Levi’s first book. The title is a play on 

words for theory and practice,  Maaseh corresponding to practice and Hoshev 

corresponding to theory.  Levi writes in his introduction to the book:  

 

“It is only with great difficulty that one can master the art of calculation, without 

knowledge of the underlying theory.  However, with the knowledge of the 

underlying theory, mastery is easy… and since this book deals with the practice 

and the theory, we call it Maaseh Hoshev”. 

 

Maaseh Hoshev is a major work in two parts.  Part one is a collection of 68 

theorems and proofs in Euclidean style about arithmetic, algebra and combinatorics.  Part 

two contains algorithms for calculation and is subdivided into six sections: 

 

a.  Addition and Subtraction 

b.  Multiplication 

c.  Sums 

d.  Combinatorics 

e.  Division, Square Roots, Cube Roots. 

f.  Ratios and Proportions. 

 

A large collection of problems appears at the end of Section (f) in part two.  Not 

including this collection of problems, parts one and two are about the same size, and the 

problems are about a third the size of each part.  The text in part two and the problem 

section refers often back to the theorems of part one.  Levi lists Euclid’s arithmetic, books 

7-9, as prerequisite reading. 

 

2.1.1  Square Root Extraction Algorithm from Levi ben Gershon’s Maaseh Hoshev 

 

Before we look at Levi’s method, let’s review the ancient Babylonian method which 

is intuitive and serves as a starting point in order to more easily understand Levi’s method.  

This method may be familiar to many readers.  Given N, it works by guessing some 

number as a first approximation of the square root of N, and then improving the guess 

repeatedly and converging to the correct answer. 

 

Babylonian Method for Calculating the Square Root of N 

 

Let ai be the i-th approximation and let a1 = 1 (any number is just as good).   

Then an+1 = (an + N/an)/2. 

 

For example, the first three approximations for N=2 are: 

a1 = 1 

a2 = 1.5 

a3 = 1.416666 
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The History and Ideas Behind the Babylonian Method 

 

The Babylonian method is from 1800 B.C.E.  The Babylonians as usual, left no 

proof or explanation of the idea.  The method can be thought of both algebraically and 

geometrically.   

 

Nowadays, perhaps due to all the drilling students have in algebra, the idea is often 

presented with a common sense algebraic approach.  Algebraically, if you guess that the 

square root of N is Old, and Old is smaller than the actual square root, then N/Old will be 

bigger than the actual square root.  Then their average, (Old +N/Old)/2 is a better guess 

than Old.  This is a simple and straightforward explanation, but with a geometric view, 

numbers are distances and products are areas. 

 

Geometrically, constructing the square root of N can be done by constructing a 

square whose area is equal to N.  This can be accomplished by constructing a rectangle 

with area N, and repeatedly reconstructing the rectangle until it is close to a square.  We 

start by setting the smaller side of the rectangle to Old, and the larger side to N/Old.  Now 

we take half the excess of N/Old over Old and move it from the bigger side to the smaller 

side, thereby “squaring” the rectangle, please see the figure below.  The new square has 

side (N+N/Old)/2.   However, the area of this square is larger than the area of the rectangle 

by the amount of the small missing square in the bottom right corner of the figure.  Hence 

our new guess is smaller than the actual square root, but larger than our old guess.  Our 

new guess becomes the side of a new rectangle, and we repeat the process.  As we do, the 

small missing square gets smaller and smaller, and hence the side of the squared rectangle 

gets closer and closer to the actual square root. 
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Figure 2.  Geometric View of the Babylonian Method for Square Root Extraction 
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Levi’s Method for Square Root Extraction 

 

Levi’s idea is not new.  Some readers may recognize it as the method taught to 

them in school.  It is seen in geometric form in Chinese sources that predate him by a few 

centuries.  Indeed, it is natural to think of the algorithm geometrically, but Levi does not.  

He provides no figures, or references to any relevant geometric notion.  It is noteworthy 

that his focus is simply on the algebraic identity (a+b)2 = a2 + b2 + 2ab.  

 

Levi’s method for extracting square roots of perfect squares from Part 2 Section (e) 

of Maaseh Hoshev is shown below.  An explanation of the algorithm in plain English 

appears afterward with some hints and analysis to help the reader unravel Levi’s style.  Be 

forewarned that Levi’s writing is difficult.  He makes no use of equations, and very little 

symbolic notation.  Even the simplest relationships and theorems are stated in longwinded 

prose.  It may be best to read this section lightly and return later for a more careful reading. 

 

In order to extract the square root of a perfect square, write the number in a row 

according to its levels, and examine the last level to see whether it is odd.  If it 

isn’t odd, then bring down the digit from the level before it, so that the last digit is 

from an odd level. 

 

Afterward, find the square closest to this number, but still smaller than it, and 

write the root of this square down in the root row, beneath the previous row, in the 

middle level between the first and last levels.  And this is what we call the “result” 

row.  And the square of this root is subtracted from the top row, and what remains 

is divided by twice the root.  But be careful that after the division, there still 

remains an amount about as big as the square of the root that resulted from the 

division.  Then write this result in the root row, in the level whose distance from 

the level that you divided is equal to the distance from that level to the first level.   

 

Now take this result and multiply it by twice the root that exists, and by itself.  This 

result is subtracted from the top row.  And so you should do, until there is not one 

thing left in the top row. 

 

For example, if you wished to find the square root of 82646281, since the last level 

is the eighth, bring down the one before it to give 82.  And 81 is the square closest 

to this, and its root is 9.  Write 9 down in the root row in the fourth level which is 

half way between the seventh and the first.  And the square of 9 in the fourth, is 81 

in the seventh.  Subtract this from 82, and 1 in the seventh is left over.  And this 

cannot be divided by twice 9, which is the current root, so bring down the one 

before it to give 16, and still we cannot divide by twice 9, so bring down the one 

before it to get 164.  Divide this by twice the current root, which is 18, and the 

result is 9 which is the resulting root.  And write this in the root row in the fourth 

level after the level of 164.  Multiply it by twice the current root and itself, and 

subtract the result from the top row, and 18181 is left.  Divide this by twice the 

current root, which on the previous side is 18 and 2 tenths, and the result is 

approximately 1 in the first level.  And we write this in the root row in the first 

level.  Multiply by twice the current root and itself, and subtract the result from 
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the top row, and there is nothing left in the top row.  And so the square root of the 

given number is 9 thousand and 91, and that is what was requested.   

 

And if you wish, you can check this by multiplying the root row by itself and 

getting the top row.  And this works because of what I have already explained, that 

when one number is added to another, the square of their sum is equal to the 

squares of the two numbers and twice the product of one with the other. 

 

 

 

   1 8 1 8 1 

 1 6 4 6 2 8 1 

8 2 6 4 6 2 8 1 

     

    9 0 9 1 

 

 

For those readers trying to untangle Levi’s presentation, there are a few things to note: 

 

1. Levi is not completely consistent with his reference to the “top row”, nor does his 

example show a situation, where one must “be careful that after the division, there still 

remains an amount about as big as the square of the root that resulted from the 

division”, but there is still enough detail here, to extract the algorithm.   

2. When Levi speaks of writing a digit in a particular “level”, he is referring to the column 

for that number.  For example, 6 in the 4th level is his way of saying 6000.   

 

An Explanation of Levi’s Method 

 

Levi’s idea is to construct the square root one digit at a time, always making sure 

that the square of the current approximation remains less than the original number N.   If 

the current approximation is a, then we need to account for N-a2  by adding an appropriate 

b to the approximation.  To this end, he reminds us that (a+b)2 = a2 + b2 + 2ab, hence 

adding b accounts for 2ab+b2 of the required N-a2.  Given N and a, Levi computes b by 

dividing N-a2 by 2a.  This gives a good guess, since 2ab+b2  2ab, when b is small in 

comparison to a.  

 

Here is an example in his style.  Let’s try 3224990521.  Here the last level is the 

tenth level, so we look at 32 rather than 3.  The largest square smaller than 32 is 25, and its 

root is 5, so we write 5 in the middle column (under the second 9), i.e. 50,000.  Then 

subtract 25 from 32 and you get 7 which is not divisible by 2*5, so we look at 72, which is 

divisible by 2*5, and the result is about 7 in the fourth column, i.e. 7000.  So we take 7 and 

multiply by 2*50 + 7, giving us 749 which is bigger than 724.  Whoops!  We forgot that 

one must “be careful that after the division, there still remains an amount about as big as 

the square of the root that resulted from the division”.  In this case, the square of the root is 

49 and there is only 24 remaining after the division i.e. 724–700.  So we take 6 and 

multiply by 2*50 + 6.  This gives 636 which we can subtract from 724 giving 88.  So our 

current root is 56,000.  Now bring down another digit and divide 889 by 2*56, and we get 
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approximately 7 in the third column (i.e. 700), which we multiply by 2*560 + 7 to get 

7889, which we subtract from 8899 to get 1010.  The current root now is 56,700.  Bring 

down another digit giving 10100, so that we can divide by 2*567, and we get 

approximately 8 in the second column (i.e. 80).  Multiply 8 by 2*5670 + 8 to get 90,784.  

Note that the 10100 is the prefix of 10,100,521, while 90,784 is the prefix of 9,078,400.  

So we subtract 90784 from 101005 to get 10221.  The current root is now 56,780.  Then 

bring down another digit to get 102212 so that we can divide by 2*5678, and we get 

approximately 9 in the first column (i.e. 9).  Then multiply 9 by 2*56780+9 to get 

1022121, and we subtract this from 1022121 which leaves us with nothing in the top row.  

So our final answer is 56789. 

 

The following modern presentation of Levi’s method is easier to follow but is not 

faithful to Levi’s style or language.  

 

Levi’s Algorithm to Calculate the Square Root of a Perfect Square N 

 

1. Pair up the numbers from right to left, and count the pairs.  This leaves either a pair of 

digits at the left end or a single digit.  Let P be the number of pairs, not counting the last 

digit or last pair of digits, and let M be the (one or two digit) number which remains on 

the left end. (For example, given 2415732, P = 3 and M = 2;  given 2389397496, P = 4 

and M = 23.)   

2. Find the largest perfect square smaller than M, and let its square root followed by P 0’s 

be the first approximation.  Let A be this approximation. 

3. Let R = N – A2.  

4. Divide R by 2A, and let B be the result excluding all but the most significant digit. (Be 

very careful though, that 2AB + B2 is not larger than R.  If so, then subtract one from 

the most significant digit of B and try again).  

5. Let R = R – (2AB + B2). Let A = A + B. 

6. If R = 0 then the answer is A and we are done, otherwise go back to step 4. 

 

Here is a final example.  Let N = 16384. 

 

1. P = 2 and M = 1. 

2. A = 100. 

3. R = 16384 – 10000 = 6384. 

4. B = 6384/200  30, but 2(100)(30) + (30)(30) is larger than 6384, so B = 20. 

5. R = 6384 – 2(100)(20) + (20)(20) = 1984 and A = 100 + 20 = 120. 

6. R is not 0 so go back to step 4. 

4. B = 1984/240  8, so B = 8. 

5. R = 1984 – 2(120)(8) + (8)(8) = 0, and A = 120 + 8 = 128. 

6. R = 0 so the answer is 128. 

 

Comparison of Levi’s Method with the Babylonian Method  

 

Levi’s method, at first glance, seems very different from the Babylonian method.  The 

main differences are: 
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a. Levi always keeps his approximations smaller than the actual square roots and 

improves the approximations by adding small amounts, while the Babylonian method 

(except perhaps for the first guess) keeps the approximations greater than the actual 

square root, subtracting small amounts at each iteration.   

b. Levi’s method converges from below at a steady rate of one digit per iteration, while 

the Babylonian method converges from above at an accelerating rate. 

 

For example: Let N = 16,384.  Then Levi’s approximations will be 100, then 120, and 

finally 128.  The Babylonian method will have the following approximations:  1, 8192.5, 

4097.2499, 2050.6243, 1029.307, 522.6123, 276.9813, 168.0667, 132.7759, 128.0859, 

etc.  It is interesting to compare the two methods with respect to ease of calculation and 

speed of convergence. 

 

However, the similarity between Levi’s method and the Babylonian method can be seen 

with some analysis and careful notation.  If A is the current approximation of the square 

root, then the new approximation according to the Babylonian method is:  

  

(A + N/A)/2 = A + (N – A2)/2A, 

 

and according to Levi it is:   

 

A + (N – A2)/2A, 

 

(where the symbols  and  mean that the enclosed division excludes all but the most 

significant digit, and that this digit is occasionally decreased when necessary, as described 

in step 4 above).  

 

2.1.2  Cube Root Extraction Algorithm from Levi ben Gershon’s Maaseh Hoshev. 

 

In the same section, Levi also discusses a method for extracting cube roots.  He 

does this with a similar algorithm centering around the identity (a + b)3 = a3 + 3ab(a+b)+ 

b3,  (Theorem 62 from Part 1 of Maaseh Hoshev), in place of the identity (a+b)2 = a2 + b2 

+ 2ab, (Theorem 6 from Part 1 of Maaseh Hoshev). 

 

Given N, Levi constructs the cube root as he did for the square root, digit by digit, 

in order from the most significant to the least significant.  Let a be the cube root 

constructed so far.  Levi says to let the next digit be (N-a3)/(3a(a+1)).  This 

approximation is based on the fact that N  a3 + 3ab(a+b), when b<<a.  However, it 

sometimes makes b too large.  Levi warns to be careful that: 

 

1.  There is enough leftover to account for the b3, and  

2.  The ratio of N-a3-3ab(a+1)-b3 to N-a3 is bigger than the ratio of b-1 to a+b.   

 

If the conditions are not met, he instructs us to subtract one from b, and try again to meet 

the conditions. 
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The first condition is similar to his warning in the square root algorithm, and 

ensures that the current cube root is not too large due to the extra b3.  The strange second 

condition is similar.  It is needed to account for the fact that 3a(a+1) is smaller than 

3a(a+b).  After b is added to the current cube root, Levi wants N > (a + b)3 = a3 + 3a2b + 

3ab2 + b3 = (a + b)3 = a3 + 3ab(a+b) + b3.  Levi gives the identity  

 

3ab(a+b) = 3ab(b-1) + 3ab(a+1), 

 

and so equivalently he wants N-a3-3ab(a+1)-b3 > 3ab(b-1).  This last condition is the same 

as his required second condition when N-a3  3ab(a+b). 

 

To prime the pump, Levi gets the first approximation of the cube root of N by 

examining a left prefix of N of at most three digits.  (Note that Levi writes his numbers in 

left to right order from most significant to least significant digit, as we do, despite the fact 

that the flow of the Hebrew around it is going right to left. A note of interest to Hebrew 

readers is that Levi uses the first nine Hebrew letters to stand for the digits 1-9, and does 

not use the standard Hebrew numbering scheme unless the numbers are smaller than 

1000.)  

 

To decide whether the prefix is one, two or three digits, he numbers the digits of N 

from right to left, in increasing order starting with 1. The prefix desired is the shortest 

prefix that ends in a digit numbered 3x+1.  He instructs us to use find the largest cube 

smaller than this prefix, and place its cube root in column x+1, as the first digit. 

 

Example of Levi’s Cube Root Extraction Algorithm 

 

Levi considers the example 654321. 

 

He considers the prefix 654, and therefore places 8 as the first digit of the cube root 

in column 2.  Hence the first approximation of the cube root is a = 80.  He then subtracts 

512000 from 654321 to get 142321.  He approximates the next digit by dividing 142321 

by (3)(80)(81), and ignoring the remainder to get 7.  Then he checks his two conditions.  

For the first condition he calculates 142321 – 7(3)(80)(81) – 73 = 5894, and notes that it is 

greater than zero.  Then he notes however, that 5894/142321 is not greater than 6/87.  

Hence he instructs us to try 6 instead of 7.   Repeating the checks of the two conditions, he 

gets that 142321 – 6(3)(80)(81) – 63 = 25465, and that 25465/142321 > 5/86.  Then he 

goes ahead and subtracts 6(3)(80)(86) + 63 from 142321 to get 18265.  As an aside he 

notes, that due to the identity 3ab(a+b) = 3ab(b-1) + 3ab(a+1), an easier way to calculate 

18265, is to simply subtract 3(80)(5)(6) from 25465.  At this point Levi notes that it is 

impossible to get any closer to the cube root with integers because adding one to the 

original cube root of 80, adds at least 3(80)(81) = 19440, which is already more than what 

we have currently leftover, that is 18265. 

 

        86 

654321 

512 
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_________ 

142321 

124056 

_________ 

 18265 

 

An Easier Way 

 

Levi notes that it may be cumbersome to do the calculations required to make sure 

that his two conditions hold, and thereby ensure that the next digit is not too high.  To this 

end, he gives an alternate easier method, guaranteed never to generate digits that are too 

high.  That is, he guarantees that at any stage of the algorithm, (a+b)3 < N, where a is the 

current cube root, b is the new amount added, and N is the original number.  Note that this 

new method, in contrast to the previous one, does not guarantee that the digit will be the 

largest possible.  The previous method guarantees a lower bound on the new digit, and this 

method ensures an upper bound. 

 

Let the last digit of a be in the ith column from the right.  He instructs us to let the 

next digit equal the current leftover divided by 1/10 of ((a+10i-1)3 – a3).  In the previous 

example the current leftover is 142321, i = 2, and 1/10 of (903 – 803) = 21700, therefore 

the next digit equals 142321/21700  6.  In general, this shortcut sets the next digit equal to 

the integer part of: 

  

(N-a3)/(3a210i-2+ 3a102i-3+103i-4). 

 

Since b = 10i-2 times this digit, this implies that N = a3 + 3ba2 + 3ba10i-1 + b102i-2.  Note 

that (a+b)3 < N when b < 10i-1.  But b is always smaller than 10i-1, since it begins with the 

(i-2)th digit, hence the next digit calculated with this method is never too high. 

 

Note Levi does not claim that this new easier method always gives the largest 

possible digit.  In fact, it does not.  For example, the cube root of 6859, is calculated with 

10 as the starting approximation.  This leaves over 5859, and according to this method, 

(203-103)/10 = 700, and so the second digit equals 5859/700  8, rather than the correct 

value of 9.  Hence Levi simply provides two methods, one that gives an upper bound on the 

next digit, and one that gives a lower bound, letting the reader choose. 

 

Levi’s algebraic fluency is indicated by his manipulation of the various polynomial 

identities which form the basis of this cube root algorithm.  It is distinct from the geometric 

approach of his predecessors.  We see this same algebraic focus in the next two sections. 

 

2.1.3   An Example from the Problem Section of Maaseh Hoshev 

 

A critical edition of all 21 problems in this section, including details on the two 

different editions of Maaseh Hoshev can be found in [Si00a].  Here we present a problem 

on certain simultaneous linear equations that shows Levi’s algebraic sophistication.  Given 

A, B and C, find X, Y and Z, such that X+(Y+Z)/A = Y + (X+Z)/B = Z + (X+Y)/C.   
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He gives the solution as:  X = C+(B-A) +(A-2)BC, Y = X + 2(B-A)(C-1) and Z = Y 

+ 2(A-1)(C-B).  Note that there are in fact an infinite number of solutions to this problem.  

Levi understands this and explains that these three values are the “basic” solution.  He 

continues to explain that the presence of an additional constraint, like the value of any of X, 

Y or Z, or the sum of any two, etc., determines a unique solution.  This unique solution is 

determined by setting up the appropriate proportions with the basic solution.  His proof is 

long and tedious, and is based on theorems 44-52 from Part 1 of Maaseh Hoshev. 

 
44.  ab+a = (b+1)a, and ab+b = (a+1)b.  

45.  Given a<b<c, then c(b-a)+a(c-b) = b(c-a). 

46.  Given  2<a<b, then 2(a-2)(b-1)+b+(a-2)+(b-a) = 2(a-1)(b-1). 

47.  Given a<b, then ba+(b-a) = (a-1)(b-1)+b+(b-1). 

48.  Given 2<a<b, then 2(b-1)(a-2)+b+(a-2)+(b-a) = (a-1)b+(a-2)(b-1)+(b-a). 

49.  Given a<b<c, and d=a-2, then 2(c-1)(b-a)+cd+(c-1)d+c+(b-a)+(c-b) = 2(b-1)(c-1).   

50.  Given a<b<c, and d=a-2, then 2(c-1)(b-a)+(cb)d+(c-b)(a-1)+c+(b-a) = (b-1)(c-1)a. 

51.  Given a<b<c, then (c-1)(b-a)+c+(b-a) = c(b-a+1). 

52.  Given a<b<c, then (c-1)(b-a)+(a-1)(c-b)+c+(b-a) = b(c-a+1). 

 

2.1.4  Levi’s Algebraic and Combinatorial Identities 

 

In the first part of Maaseh Hoshev, Levi prepares the reader for the algorithms in 

Part 2, with a collection of theorems.  Many of these show Levi’s algebraic bag of tricks.  

Some of these theorems are shown in the last section, and are used in the solution to 

Problem 21.  Other theorems include formulae for sums of consecutive integers, squares 

and cubes.  In the last case, he makes elegant use of mathematical induction [Ra70].  He 

also has a complete proof of some fundamental combinatorial identities.  A list of these 

theorems with brief commentary in parentheses, appears below.  Of course, Levi has no 

notation for these theorems and so they are all heavily worded.  For example, Theorem 27 

looks like this:  

 

When you add consecutive numbers starting with one, and the number of numbers is odd, 

the result is equal to the product of the middle number among them, times the last 

number. 

 

And Theorem 65 looks like this: 

 

When there is a given number of different elements and the number of permutations of a 

second given number of these elements selected from the first given number, and smaller 

than it, changing in the order and in their elements, is the third given number, then the 

number of permutations of the successor to the second number from these elements is the 

product of the third given number by the excess of the first number over the second 

number. 

 

 

Algebraic Identities 

 
26.  1+2+...+n, where n is even, is equal to (n/2)(n+1).  
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 (Literally, half the number of terms times the number of terms plus 1.  Proof works  

 from outside in, in pairs showing that each pair sums to n+1,and there are n/2 pairs). 

 

27.  1+2+...+n, where n is odd, is equal to ((n+1)/2)n.  

 (Literally the middle term times the number of terms.  Proof works from inside out,  

 in pairs showing that each pair sums to twice the middle term.) 

 

28.  1+2+...+n, where n is odd, is equal to (n/2)(n+1).  

  (Literally, half the last term times the number after the last term.   

  Proof uses proportions, algebra like idea and 21). 

 

29.  1+3+5+...+(2n-1) = n2.  

  (Literally, the square of the middle term.  Proves it first for an odd number of terms,  

  then an even number). 

 

30.  (1+2+...+n)+(1+2+...+n+(n+1)) = (n+1)2. 

 

31.  2(1+2+...+n) = n2+n. 

  (Proof uses 30).   

  (Corollary: The sum 1+2+ .. + n = n2/2 + n/2.) 

 

32. 1 + (1+2) +(1+2+3) + ... + (1+2+...+n) = 22+42+62+...+n2, n even;  and 12+32+52+...+n2, n odd.  

  (Proof uses 30). 

 

33.  (1+2+3+...+n)+(2+3+4+...+n)+ ... + n = 12+22+32+...+n2 

  (Proof uses a counting argument). 

 

34. (1+2+3+...+n)+(2+3+4+...+n)+ ... + n+1+(1+2)+(1+2+3) + ... + (1+2+...+(n-1)) =  n(1+2+3+...+n) 

  (Proof uses a counting argument). 

 

35. (n+1)2+n2 - (n+1+n) = 2n2 

 

36. (1+2+3+...+n)+(2+3+4+...+n)+ ... + n - (1+2+3+...+n) =  

 2(22+42+62+...+(n-1)2), n-1 even;  and 2(12+32+52+...+(n-1)2), n-1 odd. 

  (Proof uses 33 and 35). 

 

37.  n(1+2+3+...+(n+1))  = 3(12+32+52+...+n2), n odd; and 3 (22+42+62+...+n2), n even. 

  (Proof uses 32, 34 and 36). 

 

38.  (n-(1/3)(n-1)) (1+2+3+...+n) = 12+22+32+...+n2 

  (Proof uses 32, 33, 34 and 37). 

 

39.  (n2-n)/2 = (1+2+...+(n-1)) 

  (Proof uses 30). 

 

40. (n2-n)/2 + n = (1+2+...+n) 

  (Proof uses 30). 

 

41.  (1+2+3+...+n)2 = n3 + (1+2+3+...+(n-1))2 

  (Proof uses 30 and 6). 

 

42. (1+2+3+...+n)2 = 13+23+33+...+n3 

  (Proof by induction using 41). 

 

43. Let m = 1+2+3+...+n, then 13+23+33+...+n3 = 1+3+5+...+(2m-1). 
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Combinatorial Identities 

 
63.  Pn+1 = (n+1)Pn, where Pn is the number of different ways to order n elements.  

  (Corollary: Pn = n!). 

 

64.  Pn,2 = n(n-1), where Pn,m is the number of ways to order m elements out of n. 

 

65.  Pn,m+1 = Pn,m (n-m).  

  (Corollary: Pn,m = n!/(n-m)! = n(n-1)(n-2)...(n-(m+1))). 

 

66.  Pn,m = Cn,mPm, where Cn,m is the number of ways to choose m elements out of n  

 without regard to order. 

 

67. Cn,m= Pn,m /Pm 

 

68.  Cn,n-m = Cn,m. 

 

 

 

2.2  Abraham ben Meir Ibn Ezra’s Sefer Hamispar 

 

Abraham ben Meir Ibn Ezra (1090-1167), mathematician, philosopher, grammarian 

and biblical commentator, lived in Spain two hundred years before Levi.  Ibn Ezra does not 

prove his results in a rigorous Euclidean fashion like Levi, nor does he show any explicit 

use of mathematical induction, however he does present some of the same knowledge of 

algebraic identities.  He was not as original a mathematical thinker as Levi, but more of a 

careful organizer who presented the known mathematics of his day.  Although he was not 

the mathematician that Levi was, he too showed early signs of an algebraic tradition in the 

process of extrication from geometric notions.  He exhibits certain combinatorial theorems 

in his works on astrology while discussing the conjunctions of planets [Ka93].  However, 

his only purely mathematical work is Sefer Hamispar,  in many ways a primitive version of 

Part 2 of Maaseh Hoshev.  

 

Sefer Hamispar, 1146, is a book on arithmetic and calculation in seven sections 

with a short introduction explaining the decimal system and the use of 0 as a place keeper.  

Note that both Ibn Ezra and Levi use the decimal system for integers but base 60 for 

fractions, as was common in that day. 

 

Section 1 - Multiplication. 

Section 2 - Division. 

Section 3 - Sums. 

Section 4 - Differences. 

Section 5 - Fractions. 

Section 6 - Ratios. 

Section 7 - Square roots. 

 

2.2.1  Square Root Extraction Algorithm of Ibn Ezra from Sefer Hamispar 
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Ibn Ezra has no algorithm for cube root extraction, but does discuss a method for 

square roots based implicitly on the identity (a+b)2 = a2 + b2 + 2ab, and the related 

approximation (x2  A) = x  A/2x.  This identity and approximation were known to the 

Babylonians and certainly the Greeks, and have very simple geometric interpretations, 

similar to those discussed in 2a.  Ibn Ezra, however, makes no reference to the geometric 

viewpoint. 

 

Unlike Levi who provided careful proofs, general examples and special cases, Ibn 

Ezra’s style is to explain his ideas through numerous examples, relying on quantity to 

substitute for rigor.  Here are two of his examples for calculating the closest integer square 

root of a given integer. 

 

7500 = (8100 - 600)  90 – 600/180  86. 

600000 = (640000 - 40000)  800 – 40000/1600  774. 

 

He checks his calculations by squaring the answers implicitly using the identity (a-

b)2 = a2 + b2 - 2ab.  For example, (800-26)2 gives 640000 – 51600 + 262 = 587724. 

 

2.2.2  Identities 

 

Through many examples he shows how to use the identities ab = (a2b2), a/b = 

(a2/b2), (a/b)2b2 =  a2, and (ab)2 = a2 + b2  2ab in order to break larger problems up 

into smaller ones.  For example, he shows how to calculate 192 if you know 72, by 

calculating (19/7)2  = (2+5/7)2 = 22 + 2(2)(5/7) + (5/7)2 = 4 + 20/7 + 25/49 = 7 + 2/7 + 

4/49, and then multiplying by 72 to get 343 + 14 + 4 = 361. 

 

In Section 3 on sums, he explicitly states the formula for the sum of the first n 

integers in two different ways similar to Levi’s Theorems 26 - 28.  He adds what he claims 

is his own formula, which is the same as Levi’s Theorem 31.  He also states the formula for 

the sum of the first n squares, Levi’s Theorem 38, and he adds the well known formula for 

summing geometric series. 

 

A Nontrivial Identity 

 

He concludes the section on square roots with a nontrivial identity, showing that 

indeed he had a sophisticated sense of algebra.  This identity is shown by examples of 

special cases followed by the general case, albeit no proof is given.  Furthermore, this 

identity is not to be found in Levi’s work. 

 

He starts with the identity 2(a2+b2) – (a-b)2 = (a+b)2.  Then he generalizes this to 

3(a2+b2+c2) – (a-b)2 – (b-c)2 – (a-c)2 = (a+b+c)2.  He then states the case for four and 

finally states the general theorem: 
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The square of the sum of any number of integers equals the sum of the squares, 

times the number of integers in your sum, minus the squares of the differences 

between all pairs of integers in your sum. 

 The first special case, 2(a2+b2) – (a-b)2 = (a+b)2, is easily thought of 

geometrically.  One way is the figure below: 

 

            a  b 

 

    a     

  

       

    b    b 

    

        a 

 

     b  a 

 

It is not as easy to imagine how this could be completely generalized geometrically.  

However it is easy to prove this theorem by induction, using just the simple identities 

available to Ibn Ezra.  In the equations that follow, we assume that the sums over all i and j 

are from 1 to n.  We wish to prove that: 

   

(*) nai
2 = (ai)2 +  (aI-aj)2 

 

Note that from (ab)2 = a2 + b2  2ab, one can derive: 

 

(**) (n+1)an+1
2 + ai

2 = (an+1- ai)2 + an+1
2 + 2an+1  ai 

 

Adding both sides of (**) to both sides of (*), gives us the (n+1)st case of the 

general theorem. 

 

Ibn Ezra concludes by explaining that the number of these differences equals the 

sum of the consecutive numbers from 1 up to and including one less than number of 

integers in your sum.  That is, he is well aware of the identity:  

 

C(n,2) = 1+2+3+…+ (n-1). 

 

2.3  Conclusion 

 

The work of Medieval Hebrew mathematicians shows the progression of algebra 

from a geometric subject to a symbolic one.  Through algorithms, creative puzzles, 

inductive arguments and algebraic identities, their work shows an emphasis on the 

combinatorial aspects of algebra.   
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