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Introduction

When teaching mathematics to computer science studeistsiatural to emphasize constructive
proofs, algorithms, and experimentation. Most computemseiestudents do not have the
experience with abstraction nor the appreciation of it methematics students do. They do, on
the other hand, think constructively and algorithmically. rédeer, they have the programming
tools to experiment with their algorithmic intuitions.

Public-key cryptographic methods are a part of every computantistis education. In
public-key cryptography, also called trapdoor or one-way crypfity, the encoding scheme is
public, yet the decoding scheme remains secret. This allbevssecure transmission of
information over the internet, which is necessary for emnere. Although the mathematics is
abstract, the methods are constructive and lend themselvesndersianding through
programming.

The mathematics behind public-key cryptography follows a journeyughrowumber
theory that starts with Euclid, then Fermat, and contimteshe late 20th century with the work
of computer scientists and mathematicians. Public-keyagygphy serves as a striking example
of the unexpected practical applicability of even the puredtraost abstract of mathematical
subjects.

We describe the history and mathematics of cryptographsufficient detail so the
material can be readily used in the classroom. The matitsmady be review for a professional,
but it is meant as an outline of how it might be presetudtie students. “In the Classroom”
notes are interspersed throughout in order to highlight lgxatiat we personally have tried in
the classroom, and how well it worked. The use of hisiwrgrimarily for context and for
interest. There are great stories to tell, and thetsesrg better appreciated in context. Plenty of
references are given for those who would like to extendvotk and design their own labs.

The material presented here was taught ileaning-communitycourse at Stonehill
College [5]. The course is a three-way collaborativéhoée courses: Discrete Mathematics,
Data Structures, and Mathematical Experiments in Computenc&c Students register for all
three courses. The first two courses are standanagréeand discussion. The third course is a
closedlab: a scheduled time when students work on spe@adiyared laboratory assignments
and interact with the computer in order to discover solutiodspainciples. The course has five
3-week units, one of which is Cryptography. In each unit: fitse week is spent analyzing,
proving theorems, and writing programs; the second week ig sigarg the programs and
theorems of the first week for experimenting and exploring; thedthird week is used for
“enrichment”, which usually means videos, stories, amatedl material of a lighter nature. The
course is interactive, with only short impromptu lecturesrduwhich we can react on the spot to
the student’s questions and experiments. The labs appdae &tdnehill College computer
science department’s website [24].



A Motivating Puzzle

In the 1995 movid®ie Hard: With a Vengeance (aka Die Hard JIBruce Willis and Samuel L.
Jackson play a bomber's deadly game as they race arounddyle trying to prevent explosions.
In order to stop one explosion, they need to solve the follopizgle:

Provided with an unlimited water supply, a 5-gallon jug, argdgallon jug, measure out
precisely 4 gallons, by filling and emptying the jugs. (8eeto in figure 1).
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Figure 1. Bruce Willis and Samuel L. Jackson Solving a MathemaRoakle.

This puzzle is useful for studying public-key cryptography, becabge solution
embodies the two major related number-theoretic res@tglid’s algorithm and Fermat's Little
Theorem. Of course this puzzle was not invented for tlogien Most references attribute the
puzzle and its variations to Tartaglia [29], but the estrk@own version of the problem occurs in
the Annales Stadenses compiled by Abbot Albert of the corofeime Blessed Virgin Mary in
Stade. Stade is a small city on the west side of thedslipary a bit downriver from Hamburg.
The date of compilation is uncertain, but seems to be 1240 [The puzzle is also discussed in
detail at the wonderful educational mathematics site @dday Alex Bogolmony [4]. Bogolmony
retells the story of how the famous French mathematiSiamon Poisson (1781-1840) was
pressured against his will by his father to study mediciReisson stumbled upon the puzzle,
solved it, and decided to abandon medicine in favor of matties.

In the Classroom:The Poisson story allows us to digress and discuss what kind
mathematics are inspiring to what kinds of people. Vdeder whether there are any
budding mathematicians who are inspired by viewing Die Hard



A Solution to the Puzzle

When solving this puzzle, it doesn’t take the students longalize that the only thing worth
doing is to repeatedly pour one container into the other, emptlyengecond container when it
gets filled. For example, to solve the case presentdteimovie, where 3-gallon and 5-gallon
jugs must be used to measure out four gallons, we filBigallon jug, pour it into the 5-gallon
jug, fill 3 again, pour it into 5, empty 5, finish pouringra 5, yielding 1 gallon in the 5-gallon
jug, fill 3 once again, and pour into 5, yielding four gadlonin this way, we could cycle through
the following values in the 5-gallon jug: 3, 1, 4, 2, and (he ©ould also pour in the opposite
direction. That is, from the 5-gallon into the 3-gallon jgiying the cycle of values: 2, 4, 1, 3,
and 0. The students discover that every value modulol&asmable and that the two cycles are
the reverse of each other.

In the Classroom We screen the scene in the movie and compare it to theosotbhe
class discovered on its own. Afterwards, we try to solve tbel@m in its general form
given jugs of sizea andb. We do this with an informal class discussion, allowing th
class to follow dead ends up to a point, and eventually cotmiagme conclusions.

Using Programs to Experiment and Understand

Gerry Sussman, one of the authors of the award winningStentture and Interpretation of
Computer Programsonce explained [28] that one grasps a mathematical idea ibnly if one is
able to write a program to illustrate it.

In the Classroom In our closed labs, the students write a program to geneiossible
values for the quantities in the jugs. The programmingés to reveal and reinforce an
understanding of this puzzle. It is an exercise that supfodsman’s hypothesis.

When the students write a program to generate the cytlegcomes clear that the
sequence of values obtained by repeatedly pouring 3 into ilyptyghe successive multiples of
3 modulo 5:

1x3mod5=3
2x3mod5=1
3x3mod5=4
4x3 mod5 =2
5x3mod5=0

The students notice that Xf appears in this cycle then= 3u — 5v, for someu andv. For
example, when measuring four gallons with 3-gallon and Sgduigs, we calculate: 4 = 3x3 —
5x1.

The students look at another example. If the jugs held 17 ayadlons then the cycle
would be: 7, 14, 4, 11, 1, 8, 15, 5, 12, 2, 9, 16, 6, 13, 3).18ecause 1 is the fifth number in
the list, 7x5 =1 mod 17, and 1 = 7x5 — 17x2. Naturally then:

2=7x10-17%4
3 =7x15—-17%6
4 =7%x20—-17x8

Therefore, after they can calculate 1, they can eddculate the rest of the numbers by
using multiples of the values used for 1. Looking at theegytble numbers 1 through 16 can be
counted in order, by starting with 1 and moving five to tlgbtreaclhtime, cycling around when
you hit the end of the list. In general, given two jugs pésa andb, a > b, thevalues that can



be obtained are the values between Oaitttht are multiples of the smallest positive value that
can be obtained.

What is this smallest number that can be obtained froamipg water back and forth
between jugs of sizes andb? In other words, givea andb, a>b>0, how can we find the
smallest positive integersuch thatwu + bv = X?, whereu andv are integers.

Euclid's algorithm gives the answer= gcdg,b), the greatest common divisor @and
b. Hence, a complete solution to the two jug puzzle for szesdb, a > b, is that we can
measure all multiples of the greatest common divis@ aridb. In particular, whera andb are
relatively prime, all values less than or equad tmn be obtained.

Euclid’s Algorithm

The students’ first stop in mathematical history is Eucl Euclid's method provides a fast
recursive algorithm, givea andb, to calculateu andv, such thatu+ bv = gcd(a,b) Euclid’'s
algorithm is described in The Elements, Book VII, Propmsig [13].

To find the greatest common measure of two given numbers... badAED be the two given
numbers not relatively prime. It is required to find the greatestmon measure of AB and CD.
If now CD measures AB, since it also measures itself, thers @@ommon measure of CD and
AB. And it is manifest that it is also the greatest, for natgrenumber than CD measures CD.
But, if CD does not measure AB, then, when the less of the nuibarsl CD being continually
subtracted from the greater, some number is left which measuresdheefore it...

In the Classroom We take this opportunity to briefly discuss Euclid’s Elements iés
place in the history of mathematics. We also spend someediscussing Euclid’s style
of writing and in particular the absence of any algebra aslamn notation. Eventually,
we interpret the paragraph above well enough to deduce the falgoushm, that given
a>b, gcd@,b) can be computed recursively as followgcd(a,b): if b divides a then
return(b) else return(gcdp, a mod b)).

The students try some examples. For 28 and 123, the taikinezwalgorithm (tail
recursion means that the recursion does nothing on the way backssuthparesult upwards)
computes: gcd(123, 28) = gcd(28, 11) = gcd(11, 6) = gecd(6, 5) = gcd(8,.1) =

Working backwards the students recursively calcule@dv such that 123+ 28/ = 1.
We start at the penultimate recursive call by calaugg linear combination of 6 and 5 that
equals the greatest common divisor:

(A)1=6-1x5.

Now, using 5 = 11 — 1x6, and substituting for 5 in equation (9

(B) 1 =6 — 1%x(11 — 1x6) = 2x6 — 1x11.

Continuing backwards, using 6 = 28 — 2x11, and substituting foeguation (B), we get:

(C)1=2(28 —2x11) — 1x11 = 2x28 — 5x11.

Similarly, using 11 = 123 — 4x28, and substituting for 11 in egudC), we get:

(D) 1 = 2x28 — 5%(123 — 4x28) = 22x28 — 5x123.

Euclid’s Algorithm Extended

This idea can be used to extend Euclid’s algorithm, sodivan a>b, the algorithm below,
CalculateUV(a,b), calculatas andv, such thatau + bv = gcd@,b). This algorithm is not tail



recursive, and the results are changed as they are as$edp. Note that the division is integer
division, and truncates the remainder.

CalculateUV(a, b:
if a mod b = gcd@,b) then return (u,v) = (1, a/b).
else let ¢’, v') = CalculateUV (b, amod b), and return(v', u' —(a/b)v").

In the last example, when= 123 and = 28:
CalculateUV(123, 28) calls CalculateUV(28, 11), which callsc@ateUV(11, 6), which calls
CalculateUV(6,5), which returns (1, —1).
Winding back from the recursion:
CalculateUV(11, 6) returns (-1, 1 — 1x(-1)) = (-1, 2).
CalculateUV(28, 11) returns (2, -1 — 2x2) = (2, -5).
CalculateUV(123, 28) returns (-5, 2 — 4%(-5)) = (-5, 22).
This means that gcd(123, 28) = 123x(-5) + 28x22 = 1.

In the Classroom As short as this algorithm may be, we find that studahtays have
some trouble remembering exactly how to do the calculationsrder to make the idea
more concrete, they are asked to code the algorithm, apdntoout and interpret the
values at each level of recursion.

The Complexity of Euclid’s Algorithm

The following brief discussion regarding the time complexityEuclid’s algorithm will be
important later when we talk about public key cryptographucliff's algorithm is usually not
taught to middle school children, perhaps because the redspit works is not obvious, or
perhaps because for small numbers other methods seenintndree, simpler, and faster. Here
are two intuitive methods for calculating greatest commatisdlis thatare usually found in
middle school textbooks.

Givena>b, gcd@,b) can also be computed by:

1. Factoring:

Factora andb into prime factors, and take the intersection of theagriactors.

2. Brute Force:

Try all the numbers frorh down to 1, and return the first one that divides laoéimdb evenly.

Of course, middle school children should learn how to faeatwd,should understand why
these two methods work. From that point of view, theseigiigas are worth teaching, however,
both algorithms have a horribly large time complexity. Timetcomplexity of the first algorithm
is proportional to the size aftb, and that of the second is proportional to the size of

In contrast, Euclid’'s algorithm is very fast. Gabri¢leeme (1795-1870), using Fibonacci
numbers, proved that the complexity of Euclid’s algorithintluding the extended version
CalculateUV, is proportional to the number of digits in[23]. This time complexity is
exponentially faster than the middle school algorithms descnib#te last paragraph! On 100-
digit numbers, the two slow algorithms will take hundreflsenturies even on the world’s fastest
computer, while Euclid’s algorithm will appear to work img&neously even on the hand-me-
down PCs often donated to middle schools!

In the Classroom Students write programs for the greatest common divisorrageth
different ways. Sure, one way would be enough, andigiwe way is Euclid’s simple
recursive formula. However, by doing it the other two wayes,introduce a side lesson
about computational complexity, which parallels the discusefothe complexity for



factoring that is so crucial later on. Simple measergmare done to illustrate the speed
differences between these algorithms. We focus on the pigstoan that theoretical
computer scientists have had with exponential versus polynomialdomplexity since
the beginnings of computational complexity in the 1960s [10].

Fermat's Little Theorem

The next stop through mathematical history that relatesodern cryptography is Fermat’s Little

Theorem, not to be confused with Fermat's Last Theorearmat’s Little Theorem was stated in
a letter from Fermat to the amateur mathematician Heed& Bessy (1605-1675) dated October
18, 1640.

Fermat's Little Theorem:
Let p be a prime that does not divide the integghena®” =1 modp.

Fermat wrote “I would send you the demonstration, if | ditifear its being too long”
[19]. Frenicle de Bessy was an excellent amateur matheamebut not the equal of Fermat, and
he was not able to provide a proof. He wrote angrily tonBeand although Fermat gave more
details in his reply, Frenicle de Bessy felt that Ferwes teasing him. Bessy was able to solve
many other problems posed to him by Fermat, but it was Ee first published a proof of
Fermat’s Little Theorem in 1736.

In the Classroom As with Euclid, we spend a brief time reviewing the &fel influence
of Fermat. We emphasize how Fermat published almost nathhig lifetime, and gave
no systematic explanation of his methods. Instead, hditefesults on the margins of
works that he had read and annotated, or in lettersatbematicians of his day. He
almost always described his results without proof, leatiregdetails of the proofs to
other mathematicians, who usually supplied them. We makdsei@ass knows about
the famous Last Theorem, and contrast it with Fernlattee Theorem which is less
famous but more applicable. One interesting note is thegatime Gabrielle Lame, who
proved the logarithmic complexity of Euclid’s algorithm, afgoved the special case of
Fermat’'s Last Theorem when= 7. For both Fermat and Euclid, there are dozens of
good references, and the reader can follow the lists in [16].

Euler’s proof, essentially identical to an unpublished versjoheibniz around 1680, can
be understood and motivated by the same water jug puztléelped us with Euclid. Consider
again the case of a 17-gallon jug and a 7-gallon jug. &tpeemice of quantities that end up in the
17-gallon jug as we repeatedly fill and empty the 7-gallgnifto it are: 7, 14, 4, 11, 1, 8, 15, 5,
12, 2,9, 16, 6, 13, 3, 10, 0.

In the Classroom Students use the program they wrote earlier that generates th
successive possible values for the quantities in the pgd experiment to see what
happens when the sizes of the two jugs are relatively prinseivevhen they are not.
Examples and special cases are always helpful whey thyimotivate the statement and
proof of a theorem.

The students notice how the 16 multiples @fré all distinct modulo 17. This would be
true for any pair of relatively prime numbeasandp. If any two of thep—1 multiples ofa were
equal modul@ then their difference, call @&x, would be divisible byp. However p does not



divideax. By assumptionp does not divide, andp does not dividex because is lessp. Hence
p does not dividex, because:

Euclid (VI11.30)
If two numbers, multiplied by one another make some number, and any prima numbe
measures the product, then it also measures one of the original numbers.

Now if thep—1 multiples ofa are all distinct modulp then their product,
ax2ax3ax...x(p—1)a equals the produdx2x ... x (p-1), modulop. Fermat’s Little Theorem
follows by dividing both sides of the equality hy2x ... x (p-1). With the proof of Fermat's
Little Theorem in hand, we are ready to study public-keptography.

Cryptography: A Brief History

The history of cryptography covers thousands of years witkrdoof interesting stories [14, 25],

including:

= The story of Lysander of Sparta in 404 BC who decoded a geessatten on a belt by
winding the belt around a wooden staff, and reading the I¢ki@rsppeared adjacent to each
other, (see figure 2). He learned that Persia was pigmam attack, and he was able to thwart
the attack.
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Figure 2: Lysander Decoding the Transposition Code

= The story of Mary, Queen of Scots, who was execufedt Aer encoded correspondence
regarding her plan to murder Queen Elizabeth | wascepeed and decoded.

= The strange story of the Beale Ciphers, describing the mildgation of a fortune in gold,
buried somewhere in Virginia in the nineteenth century &ladaet found.

= The cracking of German codes by Alan Turing in BletchleykfPBngland, during World
War Il. This story is brought to life by Sir Dere&cobi in the Broadway play and later PBS
TV specialBreaking the Code

A complete history of cryptography is beyond our scope herethendeader is referred
to [14, 25]. We will review only enough of cryptographic histtygive context to the work of
Rivest, Shamir, and Adelman [21].

In the Classroom These stories are all very colorful and fun. They catchintieeest of
the class, who are about to get hit with some much lessfuloand more difficult
mathematics.



The code of Lysander wadranspositioncode where the letters transmitted were correct
but scrambled out of order. The winding of the belt put them backrdger. Modern
cryptographic methods are allibstitutionciphers in which letters or numbers are replaced by
other letters or numbers.

One of the oldest substitution ciphers is called the Caedagrcipvented by the Roman
Emperor Julius Caesar. Caesar’'s method is similangadecoder rings given away in cereal
boxes in the 1960s (see figure 3).

Figure 3: Ovaltine Nostalgia Decoder Ring

The alphabet is rotated by some number of letterigrsexample if we rotate five places,
“a” becomes “f”, “b” becomes “g”, ..., and finally “z” becomée”, wrapping all the way around.
The substitutions for this rotation (call it the “f-sh)féire shown below:

abcdefghijklmnopgrstuvwxyz
fghijklmnopgrstuvwxyzabcde

For example, Caesar’s famous phrase “veni vidi vicitéine | saw | conquered") would
read “ajsn anin anhn” using the f-shift. Actually, Cadsarself was partial to the c-shift. A
codebreaker only has to try 25 possibilities to break an emgditte this. By translating the
message 25 times using the reverse of each possibleskifteuntil one translation looks like a
real message, he will eventually find the real message.

A better substitution method that is much more difficult toodie is called the Vigenere
Cipher. Blaise de Vigenere (1523-1596), from the court of HehryeHcribed his method in a
book titled A Treatise on Secret Writing Vigenere was also known for his 1578 rationalist
treatise debunking superstitions about comets. “In thie littlok various statements regarding
comets as signs of wrath or causes of evils are giverthandollowed by a very gentle and quiet



discussion, usually tending to develop that healthful skepticisnrchwig the parent of
investigation.” [31]

The Vigenere cipher is an example giayalphabetic substitutiooipher, in which each
subsequent letter uses a different shift. After a vthise shifts cycle. The sequence of shifts is
represented by a codeword consisting of letter shifSor example, if the codeword is
“remarkable”, then the first letter of the message wshitt by 17, the second letter by 4, ..., the
7th letter by O, etc. The 11th letter would shift by 1@iadike the first and the cycle would
repeat.

For example, using the codeword “remarkable”, the sentemearieet in new york for a
rendezvous” would be encoded as “ni yevd io yin carb pos | viopdl Note that spaces
between words are not actually transmitted or encodedt. afcodeword like “remarkable” of
length ten, there are P6different possible encodings. The longer the codeword, the mor
possibilities there are.

In the Classroom Students write a program that encodes and decodes a Vigepiege ci
The program takes plaintext along with a codeword and prodacegpéed text. In this
exercise as well as others that follow, we have the stsdempete against each other by
creating messages for each other to decode. Thist®ffln, and the students love it.

Breaking the Vigenere Cipher: Determining the Length ofthe Codeword

The first step in breaking a Vigenere cipher is to deteerthie length of the codeword. There are
a number of ad hoc ways of doing this including the work a$igki (1863) and Kerckhoff
(1883). The former searches for commonly recurbigyams (two letter combinations) that
might encode words like “me” or “it”, hoping that the distesidbetween repeated occurrences
will be the length of the codeword. The latter triesadéht lengths, groups the letters into
disjoint sets each of which contains letters that usesainee substitution, and sees if the sorted
frequencies of the encoded letters match the sorted expg&ciglish frequencies. This latter
method also suggests guesses of the actual key word. veigweither of these methods is as
reliable as the more systematic method of Philip Friedoedotished in 1922 [8].

Friedman’s ingenious method to determine the length of the codewdesdsibed by
David Kahn [14] as "the most important single publicatiooryptology.” Friedman defines the
index of coincidence statistical measure of text, that for normal Engéistibout 6.6%, but for a
random collection of letters is only about 3.8%. He tisissmeasurement to calculate the length
of the codeword.

To determine the index of coincidence of a particular piecexgftike the text, rotate it
by some random number of places, and write the rotax¢dibelerneath the original text. For
example, the sentence below is rotated by 58 charactérthe rotated version appears beneath
it.

alanturingbreakscodeslikenobodysbusinessbuthispersonallifesadlys@agpbodysbusiness
dysbusinessbuthispersonallifesadlybecameeverybodysbusinessiadgmmaakscodeslikenobo

The index of coincidence is the number of places in wiiielsme letter occurs in both
strings of text. In this example, there are 6 coincidefare87 characters of text, a rate of 6.9%
and close to the 6.6% of normal English text. An impadnp@mt to notice is that when a text is
encrypted with a Caesar cipher, where every letter fsedhby the same value, the index of
coincidence remains constant.

For a Vigenere encryption, we would expect to see anxiafleoincidence more like the
3.8% of random lettersjnlesswe happen to have rotated by a multiple of the Vigenerk cyc



length. In the case where the rotation is a multipldefcycle length, the letters that are lined up
underneath each other are encoded using the same shift, ancsuidle English index of
coincidence would be expected, because the index of coincitemreariant under a Caesar
cipher. Hence the way to determine the Vigenere cycléhasgo rotate the encrypted text by 1,
2, 3, etc. symbols, until we see an index of coincideretedbks more like 6.6% than 3.8%.

The Vigenere cipher itself did not catch on, but variationst afid, including the
Gronsfeld cipher, (which is essentially a Vigenere cipuh a codeword of digits), and the
more complex ciphers of the Germans during World War Until the work of Kasiski,
Kerkehoff, and later Friedman, the Vigenere cipher andvétsants, were for 300 years
considered unbreakable, especially if long codewords weed asd short messages were
encoded.

In the Classroom Students write a program using Friedman'’s technique to deeethe
cycle lengths of messages encrypted with different codewor8eeing the correct
percentage pop up is perhaps the best way to appreciate &nisdamazing contribution
to code breaking.

Breaking the Vigenere Cipher Given the Length of the Coeword

Once one knows the length of the cycle, 10 for the “remarkaxaimple, there are a number of
techniques for breaking the code without having to try all thsilpii§es. One idea is to divide
the letters of the encoded message up into 10 groups, onelicshégédn the cycle. The™ 11",

21% etc. make the first group. Th& 22 32" etc. make the second group. And so on. The
letters in each group are encoded using the same shifis rméthod is very much like
Kerckhoff’'s method but without having to guess the length ottuzword.

We try to decode the letters a group at a time. Fdn gemup, we try all 26 possible
shifts, but since the letters in each group are scdttbreughout the message, we are unlikely to
learn anything by doing this. The chance of the partialboded message looking familiar will
be very small.

Nevertheless, there is a way to learn something about tbeage Every language has a
characteristic statistical frequency for each fett€or example, in English the letter “e” is the
most frequently used letter. For a given group, we coenee frequencies of the letters in each
of the 26 decodings to the expected frequencies. Matchingvihaets of frequencies helps
identify the shift or at least narrows down the numbigoassibilities from 26 to just a few. Of
course this method requires a large text sample.

In the Classroom We have not yet designed a lab to experiment with this metkod.
requires a linear least squares regression and our studsve not yet studied this in
their math classes. Instead, we have the students desigm ad hoc methods for
guessing the letters, which allow for computer-human catiper These methods force
the students to be creative and unique. The methods ardradgsto the history of
breaking codes. The kind of programming that went on at Blgt¢tdek during World
War Il was exactly this ad hoc style of combining analytivethods with practical
necessity. It was the combined power of machine and hunwnepr solving that
ultimately cracked the German codes.

In World War II, the Germans used an encoding schemaasito the Vigenere cipher
but more complex. They used a machine to generate the lditgitistions, and the cycles were
extremely long. The machine the Germans used was th#deinigma. An online simulator of



such a machine can be found at [6]. Breaking Nazi ccetpsred the sophisticated computer-
aided decoding effort led by Alan Turing.

The important thing to note about the Vigenere Cipher #dntsavariants is thatf one
knows the encoding method (via espionage for example), then the dewodivgl. At first
thought, a kind of encryption where the encoding method is ndy eagersible might appear
impossible. However, if such a scheme were possible,ebem if the encoding method were to
fall into the wrong hands, the enemy could still not ead#iyode messages! Now we are ready to
jump ahead to the late twentieth century to the wotRieést, Shamir and Adelman.

Public Key Cryptography: The RSA Breakthrough of 1978

Cryptographic methods do not have to be reversible! Tadagw kind of encoding is used
which is calledpublic-keycryptography (oione-way or trapdoor). With this new method, the
whole world is able to encode messages, but unless Sam Haskerone information, he still
cannot decode a message.

This new method is what allows e-commerce to flourighait fear of a security breach.
Suppose | want to send my credit card number to Amazon.doancode my number with a
publicly published method that anyone else could use callquutiie key but only Amazon.com
can decode it because only they haveptineate key

Authentication

What if | don’t trust that | am actually talking to Amazoom? That is, | suspect that Sam
Hacker posing as Amazon, sent me a fake public key, anti¢hatplanning to decode my reply
with his own private key and get my credit card number! hiat tase, we do the process in
reverse. | ask Amazon to send me a message encodedeitiprivate key. If | decode their
message with their public key and it states, “Hi | am Asnazom”, | know that the message had
to come from Amazon.com, because nobody else would have knowtolewode it correctly.
This is called authentication and is described in nice dbtaiVeriSign, the largest digital
signature provider [30].

The students often wonder what prevents Sam Hacker from ésiazon’s private
signature. After all, everyone who decodes “Hi | am Amazon’Gamows what those characters
look like before they are decoded. Sam could decode theatsignjust like anyone does, and
start signing messages with it!  This is a serious pnabldhe solution is to run the whole
message sent by Amazon throughhash function — and then encode the result of the hash
function with Amazon’s private key. (A hash functidrs a function that takes a messagef
any size and computed$(M) a fixed size output, with the property that it is computatiign
infeasible to find another messagewhereH(N) = H(M).) Then all Sam could do is retransmit
the very same message Amazon meant to send, but he cowddnaohis own messages with
Amazon’s signature.



Another objection often arises in class: How do we knaw the public key of Amazon
is correct? Perhaps an adversary has published fake Amammopublic keys all over the
Internet. The solution is to have a company like VeriSigmaguee the authenticity of Amazon’s
public key by the same process. Of course someone coudth@ribiey are VeriSign, but that is
hard to do since VeriSign’s raison d’'etre is to maikee that nobody masquerades as them. Their
business depends on it.

The Mathematics Behind Public Key Cryptography

How do we construct and use these private and public keygPedtingly, the method is based
on number theory, one of the oldest branches of pure mathematce famous for its beauty
and elegance than its practical applications.

We start by describing a simple version of the Rivest, Shaanil Adelman (RSA)
algorithm that isnot public-key cryptography because the private key can be comjpatedhe
public key using the Extended Euclid’s Algorithm describederarlThis simpler version isolates
the main ideas from the public-key part, and helps one bettezcigie the contribution of RSA.

Public key cryptographic methods encode integers into integemse sassume that our
messages are first converted somehow to a sequenceg#rgit The exact method of conversion
uses hash functions and is not trivial but that won’'t conasrhere.

To encode a number, we will need tmeblic key This consists of two integers, for
example 5 and 17. The second integer must be prime, andsthraudst be relatively prime to the
second integer minus one. In this case, 17 is prime, anteitively prime to 16.

For example, to encode 6 using this key, we calcufateosl 17. You can check that this
equals 7. To decode 7 back into 6, a brute force approachestiying all possible values from
0 to 16 to see which one would encode into 6. This is conmuoadlyy prohibitive when the
prime has 40 or more digits. However, we can decode quiiclahg calculate theprivate key
The private key also consists of two numbers, one ofhwisi part of the public key, namely the
prime 17, and one of which is private, in this case 13. Toddgave calculate®”mod 17, which
you can verify equals 6.

How is the private key, 13 in our example, calculated? thassolution to the equation
5u =1 mod 16. This solution can be computed efficiently witiclie’'s Extended Algorithm, by
finding u andv such that 6 + 16v = gcd(5, 16) = 1.

Why does the private key decode correctly? In our exampie,dees 82 mod 17 = 6
mod 17?2 It all comes down to Fermat’s Little Theorerarnfat’s Little Theorem implies that’
=1 mod 17. Since 5(13) = 1 mod 16, we can write 5(13) = 16(4) Fhus 63 = ¢ *1
Finally, since & =1 mod 17, 8% **= 6 mod 17.

In the ClassroomWe have found that isolating the RSA idea from the partréuptires
the factoring enables students to more easily understendlgorithm. Furthermore,
there is some historical justification for this pedagogscduse the results were
discovered in this layered way.



The RSA Algorithm

The real RSA algorithm is very similar to the algorithrsaéed in the previous few paragraphs
with one important difference: with the real RSA inist easy to compute the private key from
the public key.

This time we start with two prime numbepandq, say 2 and 17, and compute their
productpq = 34. We calculatepfl)(gq—1) = 16, and then choose a value that has no common
factors with 16, let’s try 5. The public key becomes the gfaaumbers 34 and 5.

The encoding and decoding is done just like before. For exahaplencode 6, we
compute 8 mod 34 = 24, and to decode 24 we computlé 2wd 34 = 6. As before, 13 is the
solution to the equatioru5= 1 mod 16.

The difference between the real RSA idea and our fitstpt is that previously 16 was
calculated simply by subtracting 1 from the common public prifrtee equation, b= 1 mod 16,
was then solved by Euclid’s Extended Algorithm. But now thg evdy to calculate 16 is to
factor the number 34 into 2 and 17 and compute (2-1) x (17-1). Ardctioeing part is hard!
Nobody knows how to factor numbers quickly. The best metaoelexponentially slower than
the time complexity of the Extended Euclid’s Algorithm.

Of course, anybody can factor 34, but in practice the twogwsrithat are chosen for the
public key are on the order of 100 digits each. This makesualerdly known factoring
algorithms take years. If you come up with an efficient algor that can factor numbers, you
will be famous!

In the Classroom Students write programs to encode integers using the RSAthigori
As with the Vigenere cipher, they compete by trying to bresdh other’s codes. The
importance of choosing large enough prime numbers comife, t@as otherwise their
messages are easily cracked. As the large prime fal#test the cracking attempts, the
students appreciate first hand just why it is safe to serr@édit card number over the
internet.

The Problem of Factoring

What makes the RSA algorithm a one-way, t@pdoor method, is that decoding requires
factoring, and encoding does not. There is currently norbegte to factor an integer than to
try all possible prime factors, up{a. This is an exponential time algorithm. At first, a ddt
students mistakenly think that this a polynomial time algorithm, because the process takes
about {/n operations for an integer. However, computer scientists naturally measure time
complexity as a function of trszeof the input, and thsizeof an integen is the number of bits
it takes to store the integer, which is proportiondbtpn. Lettingm = log n, the best factoring
algorithm takes time proportional 88"?operations.

Is there a faster way to factor numbers? Thereftier all, no proof that factoring is
inherently hard. The problem of factoring is not even kntwbe NP-Complete. Perhaps one
day someone will come up with a polynomial time factoringritiga.



In 2002, a trio of Indian computer scientists, Agrawal, &aand Saxena invented a
polynomial time algorithm [1] to determine whether or not a neirmb prime. Letm be the
number of bits representing the number to be factofdair algorithm runs in time proportional
tom'2.  This was a huge breakthrough, since up until thenesierbsult was™*9*® "discovered
in 1983 [20]. This latter result is not polynomialnmbecause of théog log mfactor in the
exponent.

For determining whether or not an integer is prime, iossible that the exponential time
algorithm,m°9° ™ will run faster than the provably polynomial time algumit m*2, but that is a
question of engineering. Even thougg log mis theoretically not a constant, it is less than 4 for
all input sizes currently being used for secure messagsmission, and less than 10 for all input
sizes ever likely to be used. A joke from Carl Pomerg®@esummarizes “that although it has
beenproved that log log mtends to infinity withm, it has never been observed doing so”.
Nevertheless, from the complexity theorists’ point of vidve polynomial time breakthrough of
Agrawal, Kayal, and Saxena [1] is a milestone in the ity 4-minute mile was. It opens
possibilities, debunks impossible barriers, and confwhat most thought would be true and
what some suspected would not.

This breakthrough in the complexity for determining whethenumber is prime or
composite is reminiscent historically of the 1980s brealthin in linear programming. Linear
programming is an optimization problem that is used irs@its of practical situations, such as
determining the best way to schedule airline flights sto asinimize costs and maximize profits.
The simplex algorithm of Dantzig (1947) had been used farsyto successfully solve linear
programming problems, despite its theoretical worst-cag®nential time complexity. In
practice, the exponential time behavior was not obsenlidugh theoretically it was not clear
why this was the case. Then in 1979 [17], a polynomial time ilgowas invented. It took
another breakthrough in 1984 [15] and years of software engigearid testing before this
polynomial time algorithm was competitive with the exponentialet simplex algorithm.
Complexity theory, a 20century field of study, has a long way to go before itmletely models
practical computer science problems.

In the Classroom This historical parallel between linear programming #axtoring
makes an impression on the students. They are often swspiof theory and its
practical uses. Although there are plenty of exampleshdoav them the applicability of
theory in computer science, here we show them examples wierthdory is weak!
They learn that the critique of theory in science ikistorical process that forces the
theory to improve.

Can this new breakthrough for determining whether or matraber is prime be used to
help factor numbers quickly? Not yet as far as anyone kraowdsinost people suspect it cannot.
However, in many cases, including the well-known TravelingsPed@ Problem, thdecision
version of a problem is polynomially related to dpgimizationversion. [10]. That is, if you can
decide whether or not something is possible, then you can gise thow to do it. If this were
the case for factoring, then a polynomial time algorithmdieziding whether or not a number is
prime would hint at a polynomial time algorithm for deterimg the factors.



Historical Notes on RSA Encryption

Ron Rivest [22] was kind enough to share with me his aeoliections of the RSA discove
and his thoughts about the future directions of cryptograjstiyest credits the original motivation for thge
RSA work to the 1976 seminal ground-breaking padyew Directions in Cryptography by Diffie and
Hellman [7]. The paper explains how two users can excharggerat key over an insecure medim
without any prior secrets. The challenge of public-&egptography was directly proposed in this pay
and was brought to the attention of Rivest by a graduaterst. Rivest, Shamir, and Adelman wg
assistant professors at MIT at the time, Rivestommuter science, Shamir and Adelman in mathemdjics.
The departments in MIT overlap through the many indeperndsetrch labs, and the three colleagfes
collaborated on this problem at LCS, the lab for compagince.

The three tried a number of unsuccessful approachesdingl a method using thienapsack|
problem as a way to thwart thad guys | suggested that it was ironic that the approach usiagdack, 3
known NP-Complete problem, failed, while the approachgutactoring, a problem not known to be Nf-
Complete, succeeded. Rivest responded that NP-completempmobften have many different solutioffs,
and for the purposes of public key cryptography, it is edsievork with factoring which has a unique
solution.

Rivest is not currently working on the complexity of fa@ig, although he continues to work @n
new applications in cryptography related to interneingpind to radio frequency ID tags. When | asifed
him whether he believed that factoring was provabtylhlae responded “l have a built-in bias in favorjjof

than NP-completeness.” Rivest does not expect that thepobmomial decision algorithm for prim
numbers will yield a better factoring algorithm, but henilling to be surprised. “I'm always in favor
the truth.”

Did Rivest realize the broad applications and notottiety their work would eventually yieldf
Rivest explained that RSA was discovered long before thedadkie internet and just before the persopal
computer age. He had no inkling of the eventual supportidgarial role his research would have orje-
commerce. “It wasn'’t obvious, a priori, that our resuduld stand the test of time.” Theoretically, thdre
could be advances in factoring methods. Practicéié/applications might not find enough uses.

After PCs came on the scene, Rivest et al startedngany in 1983, called RSA Data Security[fin
an attempt to find commercial uses for the theory 1B86, “we thought we would go bust”, but thgn
Lotus Notes signed a contract. The 1990s introduced thelwile-web and RSA became ubiquitolfs.
VeriSign was spun-off, in order to maintain its independdrura the technology, and RSA Data Secuffty
was bought and renamed simply RSA Security (http://wwvecsagy.com/).

Commercial success notwithstanding, Rivest seemsptessted with how cryptography as a figjd
has evolved. “The rich interplay between theory andtiseabrought vitality to the subject.” It has algo
brought controversy.

The National Security Agency (NSA) is a government agevitty a heavy investment in secrigt

Today the NSA allows academic freedom in cryptograpsearch but still insists that software comparfes
register their cryptographic products with the Bureau ofistrg and Security (formerly the Bureau (pf
Export Administration); sedttp://www.bxa.doc.gov/Encryption/Default.htm The role of the NSA i
monitoring cryptographic research and its commercialldpugent will no doubt continue to evolve.




In the Classroom The students learn where the history of this researbkading and

what problems are still open. Examples of problems evttex decision and optimization
versions arenot polynomially related is rare. It seems that tfmay be the case for
factoring. When will we know?

Research on new cryptographic methods continues simultapeaitbl research on
breaking the current codes. There are long-term stratdifiesjuantum computing and DNA
computing, and short-term strategies using conventional computimgll cases, mathematics
will no doubt play a central role. In the meantime, e4o@nte is still on secure ground.

In the Classroom Quantum computing and DNA computing are very new fields that tr
to deal with the fundamental intractability that is inimer@ hundreds of NP-Complete
problems. They represent two parallel paths of future vilmek may or may not bear
fruit. They are difficult fields but could be used toidedabs, although we have not yet
attempted to do this. The interested reader should ¢q8kul

Cryptographic Decoding Challenges for Practice and Review

In the Classroom In our labs, we not only have the students compete agaicistogher
by designing and cracking each other’s codes, but also by sehmgan first decode
messages that we created. There are usually cash ptieee the amount is proportional
to the level of difficulty. The Vigenere ciphers pay mateen we do not tell the students
the length of the codeword. Here are some examples:

Vigenere Ciphers |

A two-cycle Vigenere encryption gives an encoding of a well-knoevebral song:
BQHIERPVBZXOPORHASACNFLQHBYSKFBBZKBHAHASYZHKXFLQHBLEHBBZKB
HAHASKOBB
PWMVMVXHACNUAHLWWPXHAWGYBBBQHIERUSTBHHASKZBBVCEBBTBCGZRV
TRTPKOBB. What is the original text?

Vigenere Ciphers I

A five cycle Vigenere encryption gives an encoding of a WoodigmAinath joke:
BOQWMNWOOQSSFHQKASRLAGOWRAADWRKAONCIOHKJKCYHVYWHLLC
What is the original text?

RSA Ciphers |

An RSA encoding of nine ASCII values, using public key (10555, 219%#s ghe name of a
hunter: 16912 19531 20676 16912 6613 2348 17835 15770 15770. What is the original
text?

RSA Ciphers Il
An RSA encoding using public key (5555551, 118513313) gives: 80217189 107242213
96490860 79543571 25953566. What are the original numbers?



Conclusion

Cryptography is an ancient yet vibrantly active field fathematicians and computer scientists.
It is fun to teach because it contains a beautiful cortibmaof elegant theory and practical

application, and lends itself to exploration and learnimgugh programming and experiments.
The history of cryptography, while providing stories ofigue and excitement, is a mathematical
metaphor for the delicate balance between theory andqaract
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