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Mathematics in Hebrew in Medieval Europe

RO I WAG N E R
with contributions by Naomi Aradi, Avinoam Baraness, David Garber, Stela Segev,
Shai Simonson, and Ilana Wartenberg

INTRODUCTION

This chapter covers mathematics written in Hebrew between the eleventh and sixteenth
centuries in Europe. But the term “Hebrew mathematics” risks conferring an illusory unity
on the corpus presented. As we shall see, the mathematical works covered in this section are
strongly rooted in the non-Hebrew scientific traditions around which they evolved.

The Hebrew works are linked together by a common thread of canonized Hebrew
references and sometimes are concerned with applications to Jewish philosophy or law,
but these links are generally weaker than those that bind each work to its specific non-
Jewish surroundings. These relatively weaker links, however, should not be ignored. Indeed,
they are strong enough to compose some interesting syntheses and sometimes cast Hebrew
mathematics in the role of a cultural “go-between.”

The twelfth century, which is the starting point of this collection (except for a short
extract from Rashi), is not the beginning of Hebrew mathematics. Indeed, one can find some
mathematical discussions in the rabbinical literature as early as the Mishnah (100–300 CE).
But these are few, far between, and do not constitute a systematized body of knowledge.
Later on, Jews living in Islamic countries before the twelfth century continued writing
mathematical treatises, but they used classical Arabic as their scientific language and
addressed their writings to the entire mathematical community, not specifically to Jews.

It was only in the twelfth century that the demand and opportunity arose to produce original
and translated Hebrew scientific works. In the first half of that century, the cultural divide
between Arabophone Judaism south of the Pyrenees and Hebreophone Judaism to their north
led to the composition of several scientific works in Hebrew by Arabophone Jewish scholars.
This trend gained momentum the following decades. In the middle of the century, persecutions
in Muslim Spain led to the emigration of Arabophone scholarly Jewish families to Christian
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environments, especially to southern France. In these cultural contexts Jews did not know
Arabic, and the cultural language was Hebrew. Nor did they know Latin, the literary language
of the majority culture. Scientific works in the different vernaculars did not yet exist, and
Jews did not use them for writing. Thus, it was in these locations that Hebrew emerged as a
scientific language.

The first representatives of this transition are also the most famous and most canonized
writers of Hebrew mathematics: Abraham ibn Ezra and Abraham bar H. iyya (Savasorda).
Both are witnesses of the Maghribian/Andalusian branch of Arabic practical mathematics
(mu↪āmalāt)—a branch that did not survive in its original language. Both authors link
this branch of mathematics to questions of religious law, astronomy, and number theory,
and both had a role in the transmission of this knowledge into Latin. A brief extract of
Talmudic exegesis from Rashi, the most renowned commentator on the Bible, shows that
the integration of practical measurement and biblical exegesis precedes Ibn Ezra and Bar
H. iyya; excerpts from Simon ben S. emah. Duran’s responsa indicate the lasting presence of this
integration.

The next Hebrew mathematical corpus is the thirteenth- and fourteenth-century translations
from Arabic to Hebrew executed in Provence by and around the Ibn Tibbon family. They
managed to provide Hebrew readers with Hebrew versions of a rather comprehensive sample
of canonical Greco-Arabic mathematical texts. Since the present collection excludes literal
translations of such identified Arabic sources, we include almost nothing from this important
tradition of Hebrew mathematics. Our only representatives of this circle are a short number
theoretic excerpt from Qalonymos ben Qalonymos’s Book of Kings and his translation of
a treatise on polyhedra whose source is not identified. But this should not detract from
the importance of the translators’ work: they introduced into Hebrew an ideal of literal
translation, provided an infrastructure for Hebrew science, and created a hitherto nonexistent
mathematical vocabulary, coining terms either by allocating new meanings to existing Hebrew
words or by introducing loan translations from Arabic.

Next follows the most original scene of Hebrew mathematicians, active in and around the
Iberian Peninsula in the fourteenth and fifteenth centuries. This chapter shows the span of their
work. We include some arithmetic and geometry by Levi ben Gershon (Gersonides), the most
original Hebrew mathematician, whose sources have been difficult to identify. We also include
some of the idiosyncratic and original efforts of Abner of Burgos (also known as Alfonso di
Valladolid), who followed Archimedean traditions. We further include work by Immanuel
Bonfils on circle measurement and decimal fractions (the first documented appearance of the
latter on European soil) and a sample of little-known authors of practical mathematics: Jacob
Canpant.on, Aaron ben Isaac, and an anonymous source with a more algebraic flavor.

During the fourteenth century and especially the fifteenth century, numerous Jews had to
emigrate from Spain and southern France due to Christian persecution, and their mathematical
books and knowledge migrated along with them. Isaac ibn al-Ah.dab, representing the first
generation of migrants (he migrated from Spain through the Maghrib to Sicily), carried with
him the knowledge produced by commentators on the algebra of Ibn al-Bannā↩. Later on, the
Italian mainland saw Jews working with both older Hebrew versions of Arabic sources and
newer Latin and vernacular sources. Our examples include Shlomo ben Isaac’s treatise on the
hyperbola’s asymptote and Simon Mot.ot.’s algebra.
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The last mathematical scene we sample is the sixteenth century Byzantine Jewish
community, which adds Greek sources to the mixture of Hebrew mathematics. Mizrah. i, whose
work we represent here, shows his excellent capacity as a mathematical collector and editor—
so much so that his work, late and elementary as it was, was still considered worthy of a Latin
translation and printing in 1546.

Since the chronological order of these works does not reflect a historical continuity, the
order of presentation here follows themes and levels of complexity. We begin with arithmetic
and then discuss number theory and combinatorics. We follow this with measurement theory
and practical geometry, next include some highbrow scholarly geometry, and finally conclude
with algebra. In each section, the presentation begins with the more elementary and proceeds
to the more sophisticated.

This chapter is a collaborative effort of several different scholars. I thank Naomi Aradi,
Avinoam Baraness, David Garber, Stela Segev, Shai Simonson, and Ilana Wartenberg for
making this work possible. Part of the research that made this work possible was supported
by the Israel Science Foundation (grant no. 12/10).

NOTE ON TRANSLATION AND TRANSCRIPTION

Since this chapter pools together various existing editions and translations, we could not
hope to obtain a uniform translation standard. This should be borne in mind when comparing
terms and forms of expression across the different translations. Almost all English translations
here are based on a Hebrew manuscript or edition and not on a secondary translation.1 Some
of the translations brought over from English editions were slightly adapted or revised. For
biblical quotations we used the Jewish Publication Society Bible.

Where it seemed necessary, we include explanatory footnotes in modern mathematical
notation. These should be handled with care. The modern mathematical transcription may not
faithfully represent the concepts and procedures reflected in the original sources.

Numbers were either represented as words or according to a key that gave each Hebrew
letter a numerical value (the first nine letters represented 1–9, the next nine letters represented
10–90, and the final four letters represented 100–400). The letters were combined additively
to form composite numbers, but thousands were sometimes represented apart from lower
numbers, because composing too many letters was impractical. Decimal place-value repre-
sentation was rarely used, and usually only in calculation diagrams or when dealing with
large numbers. There, too, Hebrew authors preferred using the first nine Hebrew letters over
Arabic numerals. In this volume, numbers written as words are translated as words, and those
written as sign combinations are translated into the modern place-value representation with
Arabic numerals. However, different manuscripts of the same text are often inconsistent, and
some of the translations used here might deviate from this practice.

As for the transliteration of Hebrew names and terms, when they have a standard English
transcription (e.g., Reuven, Isaac, Torah), we use that transcription. Other names and terms
are transliterated according to the typical phonetic value of the letters, using b/v for hard and

1The exceptions are Levi ben Gershon’s Harmonic Numbers, which is translated from the Latin edition (the
Hebrew original being lost), and his commentary on the parallel postulate, translated by Victor Katz based on a
French translation and checked against the Hebrew by Gad Freudenthal.
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soft bet, k/kh for hard and soft kaf, p/f for hard and soft pe, h. for h. et, t. for t.et, s for both
samekh and sin, s. for s. adiq, q for qof, sh for shin, ↩ for ↩lef, and ↪ for ↪ayin. When silent
or standing for vowels, ↩lef and he are transliterated accordingly. Long vowels and strong
(doubled) consonants are not distinguished in the transliteration from their short and single
parallels (with the exception of names where doubling has become standard, such as in Bar
H. iyya and Ibn Tibbon).

I. PRACTICAL AND SCHOLARLY ARITHMETIC

This section combines practical and scholarly—as well as earlier and later—Hebrew expo-
sitions of arithmetic. From Ibn Ezra’s foundational twelfth-century The Book of Number,
we explore some elementary calculation techniques in decimal numbers and simple and
sexagesimal fractions. We follow with a brief discussion of decimal numbers from the
unedited arithmetic of a practically unknown Aaron ben Isaac, which sheds some light on
the context of practical arithmetic at the time. Immanuel Bonfils (fourteenth century) then
shows how to do arithmetic with decimal fractions as well, but does not thereby give up
on sexagesimals. The lesser known Jacob Canpant.on (fourteenth–fifteenth century), whose
work has not yet been edited, provides a detailed discussion of irrational root extraction,
citing several methods and providing well-reasoned error analysis. Elijah Mizrah. i (sixteenth-
century Constantinople) remains at the level of elementary techniques, but provides them with
lucid justifications. Finally, Levi ben Gershon sends us back to the early fourteenth century
but presents the most scholarly, general, and abstract treatment of the arithmetic of his time,
including detailed proofs and covering calculation techniques, proportions, series summation,
and typical word problems.

1. ABRAHAM IBN EZRA, SEFER HAMISPAR (THE BOOK OF NUMBER)

Abraham ben Meir ibn Ezra (ca. 1089–1167)1 was born in Tudela, ruled by the Emirate
of Saragossa. During his lifetime he traveled extensively in North Africa, Spain, Italy, and
France. Among his intellectual friends one can find Rabenu Tam and Judah Halevi. In
Jewish circles he is a well-known classical poet and writer of biblical and Talmud exegesis,
but he also wrote on astrology and ventured into astronomy (including a translation of
al-Bı̄rūnı̄’s commentary on al-Khwārizmı̄’s astronomical tables), calendar studies, mathemat-
ics, medicine, grammar, and philosophy.

The Book of Number is the earliest surviving comprehensive Hebrew arithmetic from the
Muslim period. It seems to have originated in about 1150 and enjoyed a wide circulation.
It made a clear and recognizable impression on several later Hebrew mathematical
compositions.

The book opens with methods for applying the four basic arithmetic operations to integers
in decimal representation, simple fractions and sexagesimal fractions. It then provides an
elementary treatment of arithmetic, geometric and harmonic ratios, and summation formulas
for the series of the first n integers and squares. From there the book goes on to apply

1For a general overview, see [Sela, 2003]; for a catalog of his scholarly writing, see [Sela and Freudenthal, 2006].
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proportions (the rule of three, but not under this name) to commercial and calendar problems.
Next it treats the extraction of square roots, bundled together with some formulas relating
sums of squares to squares of differences and sums. The concluding geometry section deals
with the Pythagorean Theorem and some elementary rectilinear and circle measurement,
mentioning Hellenistic and Indian calculations for pi.

The book uses three representations of numbers. The first is fully spelled out number
words. The second is the classical Hebrew presentation, related to the Greek and Arabic
sources, of expressing numbers by letters according to a fixed key, and combining these letters
additively. The third representation is the Hindu-Arabic decimal system, with the nine digits
replaced by the first nine Hebrew letters, and zero denoted by a circle. This third representation
is used mostly in calculation diagrams, and rarely within the running text. Here the last two
representations are rendered by modern numerals. Fractions too are sometimes represented
as simple fractions (mostly in arithmetical context) and sometimes as sexagesimal or other
x-imal fraction systems (mostly in astronomy related contexts).

Numbers and the decimal place-value system (from the Introduction)
In this section Ibn Ezra introduces the Hindu-Arabic decimal system and brings in some
Jewish mysticism to complement the presentation. The multiplication sphere is probably Ibn
Ezra’s original invention.

As God almighty alone created in the upper world nine large spheres surrounding the
earth, which is the lower world, and as the author of the Book of Creation [Sefer Yes. ira]
said that the ways of wisdom are in number, letter and word [sfar vesefer vesipur], so the
number consists of nine digits which exhaust all numbers. When they are in the first rank,
they are called ones. Ten is likened to one and twenty to two. . . . And a hundred is likened
to one and to ten, and two hundred is likened to twenty and to two, and so are a thousand
and ten thousand the first among [decimal] multiples2 [rashey klalim] for the numbers that
follow, which are [marked by the Hebrew letters] .3

This is shown by drawing a circle and writing nine numbers around it [Fig. I-1-1].
Multiply nine by itself. It is a square because its length equals its width; then you see it
as it is. The square is 81, and indeed one, the first among units, is to the left of nine, and
8, which stands in the multiples position for eighty, is to the right of nine. If you multiply
nine by eight the result is 72, and indeed 2 is to its left, and 7, standing for 70, is to its
right. If you multiply 9 by 7 the result is 63, and indeed 3 is to its left, and 6, standing
for 60, is to its right. If you multiply 9 by 6 the result is 54, and indeed 4 is to its left, and
5, standing for 50, is to its right. Since five lies in the middle of the 9 numbers, it is called
“round,” and goes round into itself, because its square contains five.4 When you multiply
9 by 5 the units go round to the right and the multiples [of tens] to the left. Indeed, the
result is 45 and the 5 is to the right of 9 and the multiples [of tens], which are 4 for 40,
to its left. When you multiply 9 by 4 the result is 36 with 3 for thirty. When you multiply 9

2Multiplicity (klal) is used in opposition to a unity, designating a genuine number, or, more specifically in this
text, a power of 10.

3That is, ℵ (alef ) stands for 1, (yud) stands for 10, (kuf ) for 100, and (beit, kaf, and reish) for 2, 20,
and 200, respectively. This is the classical use of the Hebrew alphabet for representing numerals.

4The unit digit in 5 times 5 is again 5.
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Fig. I-1-1.

by 3 the result is 27 with 2 for twenty. When you multiply 9 by 2 the result is 18 with 1 for
ten. Therefore 9 serves to test the multiplication of a number by itself or by another.5 Thus
the Indian scholars based all their numbers on nine and made signs for the 9 numbers 1,
2, 3, 4, 5, 6, 7, 8, 9.6 I designate them by the [Hebrew letters] .7

If you ever have a number in the units before the position of multiples of tens, one
writes first the number of units and then the number of multiples. And if there is no
number in the units, and there is a number in the second rank, which is the tens, one
places the image of a wheel O in the first to show that there is no number in the first rank,

5This refers to the verification of calculations by “casting nines” (in modern terms, verifying that the results hold
when calculated modulo 9).

6This is the only place in the text where actual Arabic numerals are used.
7The letters are read alef, beit, gimel, dalad, hey, vav, zayin, h. et, t.et.
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and writes the number for the tens next. And if its multiples are hundreds and tens, one
writes a wheel in the first rank, then the number of tens in the second and the number
of hundreds in the third. One then writes the number of thousands, if there are any, in
the fourth rank, the number of tens of thousands in the fifth, and the number of hundreds
of thousands in the sixth . . . and so on without end. If there is a number of units and
hundreds but no tens, one writes the number of units in the first rank, and a wheel in the
second, and the number of hundreds in the third. Thus one keeps the ranks of the wheel
according to the ranks of the number at hand, and places a wheel in the first rank, or two
wheels as required at the beginning or the middle. This is the wheel O, for it is “like the
whirling [wheel of] dust; as stubble before the wind” [Psalm 83:14], serving only to keep
rank. In the foreign tongue [Arabic] it is called sifra.

The number one (from Chapter 2)
This treatment of the unit, which is in line with the Hellenistic tradition, attests to the exclusion
of one from the sequence of integers.

Know that all numbers are combinations of ones, and one itself is subject to no change,
multiplicity or division, but is the ground for all increase, multiplicity and division. One
alone is primordial and serves to change all numbers. With its single side it affects what
all numbers do with their two sides. Indeed, two precedes three on one side and four
follows it on the other, and both sides combined are six which is double three, and the
same goes for all numbers; while one has no preceding side, and the side that follows it
has two, which is double one.

Multiplication of fractions (from Chapter 5)
This segment discusses various approaches to handling fractions. The use of a common
denominator for multiplication of fractions might seem odd today, but the text sheds some
light on its context.
To begin with I state the rule that the products of fractions are the opposite of the products
of wholes. When one says multiply half by half, it is as if he says, take half of half, and the
result is one quarter. We know that the half is taken out of two, whose half is one, and the
other half is also one. The product of one by one is one, and the square of the denominator
[more] is 4, so this last one is a quarter, which is half of half. We do the opposite of our
practice with wholes, always taking the value of the product with respect to the square of
the denominator. Multiplying a third by a third, the result is a ninth. Multiplying a quarter
by a quarter, the result[ing denominator] is 16 and the numerator is one, which is half an
eighth. Continue this way until ten and also above, as in one part in 11 multiplied by one
part in 11 is one part in 121, which is the square. This way you multiply fractions of some
kind by fractions of the same kind, whether equal or one bigger than the other, and then
divide by the square of the multiplied denominator.

Example: We want to multiply 3 quarters by 3 quarters. The denominator is 4. For
each of the 3 quarters we take 3, and the product is 9. We divide them by 16, which is
the square of the denominator, and get its half and half of its eighth. If you wish you may
divide 9 by 4, and the result [measured in quarters] is equal because the quarter of a
quarter is half of an eighth.
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Example: We wish to multiply 3 fifths by 4 fifths. The denominator is 5. For the 3 fifths
we take 3, and for the 4 fifths 4. We multiply 4 by 3 yielding 12, which is the product.
[Taken with respect to 5 squared] this gives 2 fifths of the square8 and 2 fifths of a fifth.

And if we are given fractions of two kinds, and are instructed to multiply 2 thirds of
one by 3 of its quarters, we seek the denominator for both, multiplying 3 by 4, which is
the denominator 12 whose square is 144. So for 2 thirds we take 8 [out of 12], and for
3 quarters 9 [out of 12].9 We multiply 8 by 9 and get 72, which is half of 144, the square
of the denominator. So the result is half of one.

And if you multiply 2 by 3, you also have half the denominator, which is 12. So if
you have two [different] denominators it is easier, as there is no need to square the
denominator. Consider only the product of one denominator multiplied by the other as
if it were the square [in the product of fractions with equal denominators], and divide by it.

Example: We take one denominator 3 for the said thirds and the other denominator 4
for the said quarters. Multiply the one denominator 3 by the other denominator 4 yielding
the required 12, with respect to which we take the [following] product: for the 2 thirds we
take two (out of the 3), and from 3 quarters we take three (out of 4). We multiply 2 by 3,
yielding 6, which is half the product of the denominators.

Commercial problems solved by proportion rules (from Chapter 6)
The following is an example of the usage of proportion in commercial problems (the Rule
of Three). Note the use of the wheel symbol for both zero and the position of the unknown
number in the diagrams. The first example requires a double use of proportion (Rule of Five),
and the second applies the Rule of Three in a false position (making a guess and then rescaling

8Does the “square” here suggest a figurative model—a square divided into 5 rows and 5 columns? With such a
figurative model in mind, it is easy to see that the product of 3 rows by 4 columns equals two full rows (fifths) and
two extra subsquares (fifths of fifths).

However, the term “square” could simply refer to the squared number, 25. The elliptic formulation would then be
odd, but not impossible.

9Here Ibn Ezra is finding a common denominator for the two fractions to be multiplied. This might strike us as
odd, but may indicate the use of a figurative model as above, where an equal subdivision into 12 rows and 12 columns
is preferred over an unequal 3-by-4 subdivision. Alternatively, this preference for a common denominator may be the
influence of sexagesimal-like systems, where a multiplication of minutes by minutes (sixtieth parts) is measured in
seconds (3600th parts), or may perhaps indicate a general preference for homogeneity in arithmetical operations.
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to fit the required result). Note also that the famous “tree” question (which was treated, among
others, by Fibonacci) is already referred to as a standard reference problem here.10

Question: Reuven hired Simon to carry on his beast of burden 13 measures of wheat
over 17 miles for a payment of 19 pashut.s.11 He carried seven measures over 11 miles.
How much shall he be paid? Do thus. You should apply proportions twice, as there’s
no other way to get it. Suppose he carried the 7 measures according to terms, which is
17 miles. Draw this diagram.

13 7
19 012

We multiply the extremes, which are 7 and 19, yielding 133. We divide them by 13,
yielding 10 wholes and leaving 3 parts of 13 in one pashut.. But since he carried but the
7 measures for only 11 miles, we should apply another proportion and another diagram
thus: 11, 17, wheel, 10 and 3 parts of 13. Here is the diagram:

17 11
3 10 0
Since we should multiply the extremes and divide the result by 17, and we have in the

fourth 3 parts of 13, we should seek one denominator for both. We find it by multiplying
13 by 17, yielding 221, which is the denominator and is one whole. 3 parts of 13 are 51 of
221. We then multiply 11 by 10, yielding 110, and multiply 11 wholes by 51 parts yielding
561. We divide by 221, which is the whole one, yielding 2 wholes, which we join with 110
to make 112, and a remainder of 119 parts of 221. We divide 112 by 17 wholes yielding
6 whole pashut.s and a remainder of 10 whole pashut.s, which we count with respect to
221 [yielding 2,210], and add the remaining 119 parts of one pashut., which is 221 parts,
yielding 2,329. We divide by 17, yielding 137. The total is 6 whole pashut.s and 137 parts
of which 221 make a whole.

· · ·

[Question:] We subtract from an estate its fifth, seventh and ninth, leaving 10. [To find
the estate,] subtract 143 which are the fractions [1/5, 1/7 and 1/9] out of 315, which is the
denominator [as calculated earlier], leaving 172. We do the proportion thus.

0 10
315 172
We multiply 10 by 315 yielding 3,150. We divide by 172, yielding 18 wholes and

54 parts of 172. If we take away the fifth, seventh and ninth of this number, we’re left
with 10 wholes.

10See section II-2-2 on Leonardo of Pisa, Liber abbaci, in Chapter 1 of this Sourcebook.
11Literally, pashut. means “simple,” but here it is used as the denomination of a coin, which is one-twelfth of a

dinar. In fact, the pashut is almost surely the denier, a paper-thin lightweight coin of mixed silver and copper, and
the standard coin of Europe between the eighth and thirteenth centuries. The dinar is just as surely the gros tournois,
a heavy royal French silver coin introduced by King Louis IX of France in 1266, which became the standard coin of
Europe from the late thirteenth century. For more information, see [Simonson, 2000b].

12The manuscripts use the same symbol for zero and the unknown quantity in the Rule of Three. We underline
the latter to prevent confusion.
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And the same method applies to the question of the tree, which has a third in the water
and a quarter in the ground, leaving 10 cubits above water. How tall is the entire tree? We
seek a number that has a third and a quarter, which is 12. Its third and quarter joined are
7. We subtract them from 12, leaving 5. We do the proportion thus.

0 10
12 5
We multiply the extremes, yielding 120. We divide by 5, yielding 24. This is the height

of the entire tree, because its third is eight, and its quarter six, which joined together make
14, and when we subtract them from 24, there remain 10 wholes, no less and no more.

One of the motivations for scholarly presentations of algebra and proto-algebra in the
Islamic world was the concern with sharing inheritances according to Muslim law. Here we
see this concern reflected from the point of view of Jewish law as well.

Question: Jacob died. His son, Reuven produced a deed signed by two valid witnesses
that his father Jacob gave him alone his entire estate upon his death. His son Simon also
produced a deed that his father ordered to give him half of his estate upon his death. Levi
too produced a deed that his father ordered to give him a third of his estate. And Judah
also produced a deed that he be given a quarter of his estate. And all carry the same day,
time and hour in Jerusalem where time is reckoned.

The scholars of Israel divide it by the claim of each, and the gentile scholars by the
proportion of the estate of each. The scholars of arithmetic reckon the estate as one, and
when you add its half and third and quarter, the total is two and half a sixth. Consider
the one whole as sixty, which has all the mentioned parts, yielding a total of 125. Or we
can consider the one whole as 12 and the fractions 13; the final result will be the same
either way. Let us calculate Reuven’s part according to the proportion of his estate. We will
calculate the proportion with respect to sixty, as he requests the entire estate. Say that
the estate is 10 dinars which are 120 pashut.s. This is the proportion rule for Reuven’s
estate.

0 60
120 125
We multiply the extremes, yielding 7,200, and divide by 125, yielding 57 pashut.s and 75

parts, which is Reuven’s part. [Using this same method, Simon gets 28 pashut.s and 100
parts, Levi gets 19 pashut.s and 25 parts, and Judah gets 14 pashut.s and 50 parts.]. . . .

According to the scholars of Israel, the three elder brothers say to Judah their brother:
you contest only 30 pashut.s [a quarter of the estate], and all our claims to them are equal.
Take 7 and a half, which is a quarter, and leave us. And each of the three brothers will also
take as much. Then Reuven says to Levi: you only contest 40 pashut.s, and have already
taken your share of the 30 which all four of us contested. Take a third of the 10, which is
[the remaining] quarter of 40, and leave us. And so Levi’s share is ten and five sixths. . . .

Reuven then says to Simon: you only contest half the estate, which is 60, and the other
half is all mine. You’ve already taken your share of the 40, so you and I contest only 20.
Take half of that and leave me. So Simon’s share is twenty and five sixths pashut., and
Reuven’s part is eighty and five sixths of one pashut..

13

13The method of the “scholars of Israel” is reminiscent of Pascal’s argument in his letter to Fermat concerning
the equitable division of stakes in a game interrupted before its conclusion. See [David, 1998, pp. 85–88.]
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Extracting square roots (from Chapter 7)
Here we see the technique for extracting square roots. Ibn Ezra first shows how to derive
the integer part of the root. Then, after some motivational discussion concerning identities
involving squares, he uses rescaling to obtain sexagesimal approximations of irrational roots.

Note that there are 3 squares in the first rank [one-digit numbers], namely 1, 4 and 9.
In the second rank [two-digit numbers] there are 6 [squares], namely 16, 25, 36, 49, 64
and 81. And all the ranks that follow these two proceed in the same way: all odd ranks
take after the first rank, and all even ranks take after the second rank. Indeed, squares
that take after squares in the first rank [namely, one digit squares multiplied by an even
power of 10] always have one digit, and those in the second rank have two digits, as do all
the numbers that take after them [namely, those multiplied by an even power of 10]. From
this analogy you can tell the squares that precede or follow them.

If you know the root of a number in the first or second rank, and want to know the
rank of the root of the analogous number [multiplied by a power of 10], do as follows.
Know that [the root of] what lies in the first rank is units, in the third rank tens, in the
fifth—hundreds, in the seventh—thousands, in the ninth—ten thousands, in the eleventh—
hundred thousands, and so on without end skipping from one odd number to the next odd
number. And the units are the roots of the second rank, of the fourth rank—tens, of the
sixth—hundreds, of the eighth—thousands, of the tenth—ten thousands, of the twelfth—
hundred thousands, ever skipping from even to even.14

And now I will instruct you [on] what to do when you know the analogous square and
its root. Subtract the square from the desired number [whose root you wish to find], but
make sure you take only the square preceding your number. Take the distance between
your number and the square, and divide by twice the root of the preceding square. Now
don’t subtract from your number as much as you can [namely the result of the division
times twice the root]—leave enough to fit the square of the result of the division. If the
distance to the preceding square equals what comes from the division multiplied by twice
the root, joined together with the square of what comes from the division, then the square
is true. . . .15

Example: We wish to know the square preceding two hundred. This number is of the
third rank, which is odd, so we consider the first rank, where the squares are 1, 4 and
9, and their analogous squares are a hundred, 4 hundred and 9 hundred. A hundred is
the preceding square, and its root is 10, as we said: the roots which are units for the first
rank are tens for the third. Subtract the square [of the root, 100] from our number [200],
leaving 100. We already said that the root is 10, so its double is 20. If we divide 100 by 20,

14Ibn Ezra explains that the integer part of the root of a decimal number of the form x

2n︷ ︸︸ ︷
00 . . . 0, where x is a square

integer with one or two digits, is of the form y

n︷ ︸︸ ︷
00 . . . 0, where y is a single-digit integer.

15The algorithm is as follows. To extract the root of x, take a, an integer approximating the root from below
(following the instructions of the previous paragraph). Then consider x′ = x − a2. To obtain the next digit of the
root, a similar subtraction should be applied to the remainder x′. However, now we should remove from x′ not only
the square of the chosen integer, b, but also the term 2ab. So b may be obtained from the quotient x′/2a, except that
this quotient must be reduced so that b2 can fit into x′ − 2ab. The process is reiterated until the integer part of the
root of x is obtained.
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and give the result 5, we are left with nothing from which to take the square of the result
of the division [after subtracting 5 times 20 from the remaining 100]. So we give 4, which
multiplied by 20 makes 80, leaving 20. We then subtract 16 which is the square of what
comes from the division, leaving 4. Subtract it from the two hundred, leaving 196, which is
the square preceding two hundred. Add 4, which comes from the division, to the first root
which was 10. This makes 14, which is the true square root [of 196].

The above calculations obviously relate to what can anachronistically be expressed as√
100a
10 = √

a and (a + b)2 − a2 = 2ab + b2. These two identities are easy to understand in
hindsight, but it is not clear how they would lead to the root extraction algorithm in a pre-
algebraic, intuitive way. The seemingly unremarkable examples in the following paragraph
show how a practice of squaring numbers and retracing one’s steps can produce such practical
intuition. In the first example, sexagesimal-like fractions (here actually septagesimal ones)
bring up the rescaling phenomena related to the first identity above, while the second example
shows how the intuitive division of a number into an integer and a fractional part makes salient
the structure of the second identity.

Example for a calculation that cannot be divided by 60. We multiply 4 sevenths by 4
sevenths. According to the scholars of arithmetic, we multiply 4 by 4 to get 16, divide by 7
[twice] and get 2 sevenths and 2 sevenths of a seventh. According to a way similar to that
of the scholars of astrology, make 70 parts, so 4 sevenths are 40 [minute-like parts]. We
multiply 40 by 40 to get 1600, divide by 70, and get 22 minutes and 60 seconds, which
is the square. Now if he who posed the question turns it around, and asks for the root of
this square, so shall we turn the 22 minutes into seconds, and add the 60 seconds that
we had in order to get 1600. We consider them as wholes, whose root is 40, and then
consider them as minutes, and this is indeed the root.

· · ·

Another example: It is said that the square is 11 and a ninth. What is the root? Since
it is said to have a ninth, this ninth indicates that there’s a third in the root of this square.
Subtract the ninth, which is the square [of 1/3] or fraction of fraction, and 11 wholes
remain. Their distance from the previous [whole] square [which is 9] is 2 wholes. We
turn them into minutes, yielding 120. We divide by twice the preceding root, which is 6,
and get 20. So the root is 3 wholes and 20 parts, [which are] a third.

The next paragraph shows how to derive a better approximation of the root of 2 by taking
the root of 20,000. This calculation comes after the root of 2 was calculated via the root of
200, yielding the result 1 24′ 52′′.

Let’s extract this root [of 2] again from 20,000. This number is analogous to units, and
10,000 is analogous to 1, so this is the analogous square. We subtract 10,000 from our
number and 10,000 remain. We divide by twice the root, which is 200, but we don’t give it
as much as we can, leaving enough for the square of the result of the division. So we give it
40, and [after subtracting 40 times 200], two thousands remain. We subtract 1,600, which
is the square of the result of the division, leaving 400. Our [cumulative approximation for
the] root is 140, and its double is 280. We divide the remainder by it, give it one, and
120 remain. We subtract 1, which is the square of 1, leaving 119, and our [cumulative
approximation for the] root is 141. We turn the remainder into minutes, yielding 7,140,
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and divide by 282, which is double our root, yielding 25 minutes and 19 seconds. [To get
the square root of 2], we divide the total of wholes and parts by 100, yielding 1 whole 24′

51′′ 11′′′, and this is more precise than the former calculation [derived from the root of
200, which gave 1;24,52].

Mathematics as a natural science (from Chapter 5)
The following statement concludes a short discussion of the evaluation of pi. It likens the
discovery of such evaluations to an empirical process rather than a deductive one.

And likewise [i.e., as in the evaluation of pi,] in natural history the scholars found
by way of trial and error the true properties of herbs and stones and the parts of the
human body, and none of them knows why it is so, except the blessed unfathomable
God.

2. AARON BEN ISAAC, ARITHMETIC

This section was prepared by Naomi Aradi
The only information known to us today about Aaron and his arithmetical work comes

from a single surviving manuscript in Turin. A brief bibliographical reference concerning
the manuscript is available in [Steinschneider, 1906, p. 197]. Since the upper part of this
manuscript was apparently burned, the first few lines of every folio are illegible. The
disruptions in the text indicate that it may be an autograph. The manuscript contains Aaron’s
arithmetical textbook only. The bibliographers estimate that the manuscript is from fifteenth-
century Spain.

The work is divided into three sections. The first section deals with arithmetical operations
(addition, multiplication, subtraction, and division) and has four parts: the first three consider
respectively operations with integers alone, with fractions alone, and with both integers and
fractions, while the fourth part considers roots and progressions.

The second section is devoted to word problems arranged in five parts. The first four parts
present addition, multiplication, subtraction, and division problems, respectively, each part in
turn discussing cases involving integers alone, fractions alone, and a mixture of both types in
an orderly manner. The fifth part concerns the double false position.

The third section is devoted to ratios, including issues related to number theory, such as the
discussion on amicable numbers examined in section II-7 below.

Aaron mentions Abraham ibn Ezra when he attributes to him one of his word problems
[f. 162a]. Yet this problem does not appear in Ibn Ezra’s famous Book of Number, which is not
mentioned by name in Aaron’s work. As he discusses ratios, Aaron notes Greek mathematical
terms (in Hebrew letters). This raises the possibility that he knew Greek and perhaps even
relied directly on Greek texts, such as the Introduction to Arithmetic by Nicomachus.

Included here are some excerpts from the preface, describing Aaron’s biographi-
cal background, and a mathematical-philosophical discussion of numbers and decimal
representations.

I, the aforementioned Aaron, from the day I began to engage in the craft of weaving gold
and silk images, although proficient in it with accuracy and precision, realized that I lack
some of the arithmetical methods required for the subtlety of the craft. Though I had some
knowledge of it, I put my mind and energy to investigate the general practices of number
and some of its particular properties, as human knowledge cannot comprehend them all.
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So I saw fit to write what came within my reach, and put it together into a composition
containing the rules of number and most of its many properties, so as not to forget with
the passing of events and time what I had learned and to teach them to my sons, God
willing.

If a scholar gets hold of this treatise or of Miqnat Kesef [acquired property]16 or ↪Ibbur
[intercalation] or . . . S. urat Ha↪olam [the shape of the world], which is Alfarghani in another
form, and finds that my language is not that of a learned man, he should not judge me
harshly, but give me the benefit of the doubt, because I am a craftsman, as I said, and
composed these treatises for my son Joseph. Now I add that, by my sins, he is dead, and
these compositions are left as they stood, without order and unedited. Indeed, he was to
put them in order and edit them, but now he lies deep, and I am at the end of my days,
and I never got to teach him. And so, they are as naught.

I say that the kinds of number are two. The first is the number deprived of substance,
speech or thought, which is unlimited, because it is a number in potentia rather than
in actu, and has no end. The second kind, which this treatise concerns, is the number
initially delimited and bounded by thought. Then, through the rational capacity, one can
pronounce it or write it, as one wishes. This number is thus counted and limited. It is
divided into two: even and odd, whose foundation is one, because the counted number is
a sum of units.

· · ·

A necessary comment on the knowledge of letters which are used in arithmetic: I say
that since the number deprived of substance is unlimited, the arithmeticians had to use
endless figures or letters.

[A few corrupt lines on the finiteness of letters in all languages follow.]
Since there is no letter after [the last letter of the Hebrew alphabet, designating 400],

you cannot find a letter to express a greater number. Even if you use the letters which
indicate large numbers, they will not be sufficient due to the greatness of that number,
and if you repeat them several times in writing [using them additively to express higher
numbers], much confusion will ensue.

The uncounted number is without end, and the letters have an end, and that which has
an end cannot count the endless. In other words, the smaller cannot count the larger. So
the arithmeticians agreed to set 9 figures with endless ranks. The nine figures are like
substance, and in the ranks they are of different form. The first, for example, is one, and
can be ten or a hundred or a thousand or larger numbers without end. The same goes
for the other 9 figures set by some scholar. These are the figures accompanied by the
corresponding Hebrew letters, which you may use to deal with numbers, as I do in this
treatise.

16This term is quoted from Exodus 12:44, where it refers to purchased slaves.
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So the ranks are due to the largeness of numbers, and the sparsity of letters is due to
the ranks.

3. IMMANUEL BEN JACOB BONFILS, ON DECIMAL NUMBERS AND FRACTIONS

Immanuel lived in Orange and Tarascon in Provence (ca. 1300–1377). He made his name as
an astronomer, having composed several astronomical treatises and tables, the most famous
of which, Six Wings, was subsequently translated into Latin and Greek [Solon, 1970]. He
also translated from Latin into Hebrew. His mathematical work focuses on the calculation of
roots and on circle measurements. His decimal treatment of fractions is the earliest surviving
treatment to be recorded in Europe.

This short note on decimals was first identified in a small astronomical codex. Parts of it
are available in several manuscripts, but only three of these manuscripts include the decimal
treatment of fractions. The note treats multiplication and division of decimal fractions,
division of sexagesimal fractions, and rescaling numbers in decimal and sexagesimal systems
for the purpose of root extraction. The treatment of decimal fractions and integers is
completely homogenized: each decimal place, either integer or fractional, is assigned a
positive degree, and these degrees are used to calculate the decimal place of the product or
quotient. The exception is units, which are not treated as “zero degree” integers but as a special
case. The selection below includes a short fragment on sexagesimal division, which places the
decimal treatment in context.

Know that the unit is divided into ten parts which are called prime fractions, and each
prime is divided into ten parts which are called seconds, and so on without end. I also
want to call to your attention that I am calling the degrees of the tens first wholes, and the
hundreds second wholes, and so on without end. The degree of the units, however, I am
calling by their name, units, for it is an intermediate between the wholes and the fractions.
Therefore, if one multiplies units with units the result is units [which is not the case for any
other degree].17

Furthermore, I am calling the degrees whose name is greater “greater in name.”
I mean by that: I am calling the thirds greater in name than the seconds, for the thirds
are derived from three, while the seconds from two. Similarly, the fourths are greater in
name than the thirds and the fifths than the fourths. This applies to the wholes as well
as to the fractions. Furthermore, when I say: add this name to that name, or subtract this
name from that name, I mean by that: add the name of the seconds to the name of the
thirds, yielding fifths, or the name of the seconds to the name of the seconds, yielding
fourths. Or also, subtract the name of the seconds from the name of the thirds, leaving
firsts, or the name of the seconds from the name of the seconds, with nothing left, so it
falls into the degree of the units. This applies to the wholes as well as to the fractions. If
you subtract a large name from a small name, as when we say: let us subtract the name
of fourths from the name of seconds, be it among wholes or among fractions, then it will
come into the degree of the seconds on the other side. For instance, when we say: let us
subtract the name of the fourths in the fractions from the name of the seconds also in the
fractions, then it falls into the degree of the second wholes. Similarly, if we say the same

17Words in curly brackets come from a new manuscript recently reconstructed by Naomi Aradi.



February 26, 2016 Time: 03:47pm chapter2.tex

Practical and Scholarly Arithmetic 241

with regard to the wholes, i.e., if we want to subtract the name of the fourth wholes from
the name of the second wholes, then it falls into the second fractions.

If you multiply a number by a number, both being wholes or both fractions, add the
name of the ranks, and there the product will be among the wholes if both are wholes,
and among the fractions if both are fractions. If, however, the one is a whole and the other
a fraction, if they have the same name, then the product will fall into the degree of the units.
But if the name of one is greater than the other, then subtract the smaller from the greater,
and as the number of the remaining name, there the product falls—among the wholes if
the name of the wholes is greater, or among the fractions if the name of the fractions is
greater. [As when you multiply 3 second wholes by 2 seventh fractions, you subtract 2
from 7, leaving 5. The multiplication yields 6 fifth fractions. For 3 second fractions by 2
seventh wholes, the product will be 6 fifth wholes. Here’s a diagram for that.]18
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If you divide a number by a number, both wholes or both fractions, and the name of
their ranks is the same, then the quotient will fall into the degree of the units. For if you
subtract the one name from the other name, nothing remains, and it falls into the degree
of units. If the dividend is greater in name than the divisor, subtract the name of the divisor
from the name of the dividend, and as the number of the name of the remainder, there
the quotient will fall on that side, i.e., among the wholes if they were whole, or among
the fractions if they were fractions. If, however, the divisor is greater [in name] than the
dividend, then subtract the name of the dividend from the name of the divisor, and as the
number of the name of the remainder, there the quotient will fall on the opposite side, i.e.,

18The example in the manuscript is 4541.321 times 3135.432. The numbers are originally presented as letters.
Naomi Aradi noted that the calculation diagram in the manuscript would make most sense if the first digit of the first
multiplicand is rendered as 2 instead of 4 and the third digit of the second multiplicand as 2 instead of 3. Then only
a couple of digits at the bottom line need to be amended. The differences between the original and revised versions
are marked with asterisks.
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among the fractions if both were wholes, or among the wholes if both were fractions. If,
however, the one is a whole and the second is a fraction, the name of their ranks being
the same or different, then add the name of the ranks, and as the number of the name of
the result, there the quotient will fall—among the fractions if the dividend is a fraction, or
among the wholes if the dividend is a whole.

· · ·
If you want to divide a number of [sexagesimal] degrees, minutes and seconds by

another smaller or greater number, then take the number of the lower row, which is the
number by which the number of the upper row is divided, and break it all into the kind of
the smallest fraction in it. For example, if its smallest fraction is seconds then reduce it
all into seconds, and if thirds then reduce it all into thirds, and so on in the same manner.
Thereupon take the number of the upper row, which is the number divided by the number
of the lower row, and break it into such a kind of fractions, that its distance from the kind
of fractions into which you have broken the lower be equal to the distance of the kind of
fractions which you want to obtain in the quotient from the degrees.

For example: if you have broken the number of the lower row into the kind of the
seconds and you want to obtain in the quotient thirds (or any other kind that you want,
but let us suppose in this example that you want thirds), then break the number of the
upper row into the kind of fifths, which is removed from the seconds by three degrees,
like the distance of the thirds from the end of the degrees, and then you will obtain thirds
in the quotient. And if you want to be more accurate and obtain fourths in the quotient,
break the number of the upper row into sixths, which is removed from the seconds by four
degrees, like the distance of the fourths from the end of the degrees, and then you will
obtain fourths in the quotient.

4. JACOB CANPANT. ON, BAR NOTEN T. A↩AM

This section was prepared by Naomi Aradi
Rabbi Jacob Canpant.on lived in Castile in the fourteenth and fifteenth centuries. In Hebrew

historiography, he is said to be “one of the rabbis of Spain” and a student of Rabbi H. asdai
Crescas, who wrote the famous philosophical work ↩or Hashem, and the father of Isaac
Canpant.on (1360–1463), Ga↩on of Castile. In addition, it is stated that he wrote books on
arithmetic, astronomy and the Torah [Hacohen, 1967–1970, vol. 5, p. 94]. According to
[Steinschneider, 1893–1901, p. 186], Jacob apparently was already a teacher in 1406 and was
no longer alive in 1439. He worked as a mediator in the field of medicine while preparing
a Hebrew summary of the Arabic commentary by Solomon ibn Jaı̄sh on the Canon of
Avicenna.

Canpant.on’s arithmetical textbook survives in the single manuscript located at the British
Library in London. It is titled Bar Noten T. a↩am, based on a Talmudic saying, indicating the
author’s intention to explain the reasoning ( t.e↩amim, literally, reasons) behind the arithmetic
operations, and not merely describe the procedures. The treatise begins with an introduction
phrased as a long rhymed poem embedded with biblical and rabbinic expressions describing
the circumstances that led the author to write the composition. The treatise was written at
the request of one Rabbi Joel ben Da↩ud, a close friend of Canpant.on, who wished to learn
mathematics. The book is divided into two sections. The first section is devoted to integers
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and contains six chapters on addition, subtraction, multiplication, division, proportions, and
roots. The second section deals with fractions and discusses the following issues: conversion,
fractions of fractions, equalization, addition, subtraction, multiplication, division, ratios, roots,
common denominators, completion, and shortcuts.

The passages below are taken from the sixth chapter of the first section dedicated to
extraction of roots of integers. In this chapter, Canpant.on describes iterative root extraction
algorithms in his typical lucid and elaborate manner, including a detailed comparative
error analysis. As far as is known, the formula

√
a2 + r = a + r

2a+1 was used in Eastern
Arab mathematics, but not in the West [Harbili, 2011]. Canpant.on analyzed when it
outperforms the Western formula

√
a2 + r = a + r

2a . Canpant.on also suggests and iterates

the formula
√

a2 + r = a + r
2a+ r

2a
. I am not aware of earlier precedents for these two

contributions.
The discussion starts with a description of the standard algorithm for extracting the integer

closest to the square root of a given integer. It then considers further approximations for the
roots of non-square integers, where the extracted integer root leaves a remainder.

When there is a remainder after you have completed the extraction of the [integer part
of the] root, and you wish to come closer to the truth, consider this remainder. If it is
less than the [integer part of the] root, double the root and set it as a denominator to
divide the remainder. The result is the addition to the integer [part of the root obtained by
the algorithm] in the [new approximate] root. If the remainder is greater or equal to the
[integer part of the] root, and you do not intend to come closer to the root except by this
step alone, then double the root, add one, and divide the remainder by the sum. The result
is the fractions added in the [new approximate] root to the initial integer [obtained by the
algorithm].19

If you wish to come closer to the truth, even if the truth is invisible to all living beings,
as Euclid proved, multiply the integer and fractions by themselves . . . and the result will
exceed or fall short of the initial number [whose root is being extracted]. Double the root,
as we said, and divide the excess or deficit by the result. Subtract the result from the
preceding fractions if the number [whose root is being extracted] is less than the square
of the root that you extracted in the previous stage; and if the square is less than the
number [whose root is being extracted], add the result to the preceding fractions. The
sum or the remainder will be the fraction added in the root to the initial integer [part of the
root obtained by the algorithm].20

Here Canpant.on presents the following example: on extracting the root of 10,375, the result
is 101 and the remainder is 174. Since 174 is larger than 101, the new root is 101 and 174/203,
which equals 101 and 6/7. Then, since the square of this number is less than 10,375 by 6

7 × 1
7 ,

the next approximation would add
(

6
7 × 1

7

)
/
(
2 × (

101 6
7

))
.

You come ever closer to the truth, but you will never attain it. If you look closely, you
will see that you can get the [same approximation] with less effort. Indeed, consider the

19In anachronistic terms, Canpant.on suggests that when extracting the root of a2 + r, where a and r are integers
and r < a, then the first approximation for the root should be a + r

2a , and if r ≥ a, then the approximate root should
be a + r

2a+1 .
20Canpant.on states the following general principle for iterative root approximation: if a (not necessarily an

integer) approximates the root of a2 + r, then the next approximation should be a + r
2a , and the same goes for a

subtracted r.
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fraction attained. If it is an addition [to the integer part of the root], and it was produced
by adding 1 to twice the root [in the denominator], then find the product of this fraction
by its complement [with respect to 1]. This product will be the deficit of the square [of
the approximate root] with respect to the initial number [whose root is being extracted],21

and should therefore be divided by double the [approximate] root itself and added to this
[approximate] root. This is clearly visible in the previous example (which had [a fraction]
added and involved adding one [in the denominator]), where the fraction was six sevenths.
Its complement with respect to one is one seventh, and their product is six sevenths of
a seventh; this is indeed the deficit we found with respect to the original number [whose
root was extracted], and so we instructed to divide it by double the [approximate] root and
add [the result] to this root.

But if the additional [fraction] did not involve adding 1 [in the denominator] and falling
short [of the initial number whose root is being extracted], then multiply the [additional]
fraction by itself, and divide by double the [approximate] root, because this is the excess
of the square of the [approximate] root over the original number [whose root is being
extracted].22 We subtract the result from the previous [approximate] root, and so on.

[Do] this if you wish to approach the truth by repeating the procedure, because the
more you repeat, the nearer you come to the truth, even if you can never attain it, as we
have explained. [If you repeat the procedure], never add 1 to double the root, even if the
remainder is very large with respect to the [approximate] root, so as to avoid confusion,
for [adding 1] was instructed only for a single [approximation] step. Adding 1 when the
remainder is greater or equal to the [approximate] root improves the approximation, as I
explained, but if one repeats the procedure, one does not need this addition, because by
repeating the procedure one approaches [the truth] very closely even without adding 1.
It is better not to add it, so as to maintain a standard form of procedure and prevent
confusion.

The reason we say that if we have a remainder smaller than the [approximate] root,
then we should divide it by double the root is the following. That which we add to the root
will add to the square its product by twice the previous root and its product by itself, as we
explained with regard to integers. But we proceed as if it only adds its product by twice the
root. If this were true . . . then we would have this product, which equals the excess of the
number [whose root is being extracted] over the square of the integer [received through
the root extraction algorithm], and . . . we would reach the required result. . . . [But] that
which is added to the root further adds to the square its product by itself. . . . Therefore,
when we multiply the root with the addition by itself, the square will exceed the initial
number [whose root is being extracted] by the square of the addition.23

21Canpant.on claims that when the root of a2 + r is approximated by a + r
2a+1 , then the error (the original

number less the squared approximation) is r
2a+1 ×

(
1 − r

2a+1

)
= r

2a+1 × 2a+1−r
2a+1 .

22Here it is stated that when the root of a2 + r is approximated by a + r
2a , then the error (the squared

approximation less the original number) is
( r

2a

)2. In the next paragraph Canpant.on explains that for a reiterated
approximation, one should always use this, rather than the previous approximation.

23To justify the above error estimate, Canpant.on uses the equality, which in anachronistic terms would be

rendered
(
a + r

2a

)2 = a2 + 2a × r
2a + ( r

2a

)2.
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The explanation is then repeated to obtain the next (subtractive) step of the approximation
and its error term, which in anachronistic terms reads: a + r

2a − (
r

2a

)2
/
(
2
(
a + r

2a

))
with the

error
((

r
2a

)2
/
(
2
(
a + r

2a

)))2
.

So, when we do not add 1 [to the denominator], and wish to approach the truth, [in the
first step] we should only add the fraction of the first step [i.e., the remainder divided by
twice the integer approximating the root]. But from there on we must divide the square of
the fraction produced at that step by twice the previous [approximate] root. And the result
will ever be subtracted from the previous [approximate] root.

Next comes a detailed demonstration of the above reasoning in the extraction of the root
of 7. The integer received through the extraction algorithm is 2, and the remainder is 3.
The first approximation involving a fraction is therefore 2 3

4 . The square of this exceeds 7

by
(

3
4

)2 = 9
16 = 2

4 + 1
4 × 1

4 . Therefore, the next approximation is 2 3
4 − 2

4 + 1
4 × 1

4

2×(2 3
4 )

= 2 3
4 − 9

11 ×
1
2 × 1

4 = 2 2
4 + 1

2 × 1
4 + 2

11 × 1
2 × 1

4 . The square of this then falls short of 7 by
(

9
11 × 1

2 × 1
4

)2
,

and so on.
The reason we say that when the remainder is greater than or equal to the [integer

part of the] root, we should divide it by double the root plus one (as long as we do not
intend to repeat the procedure so as to further approach the truth and restrict ourselves
to this step only), is that if we had not added one, the square of the root consisting of
the integer and fraction would exceed the number [whose root is being extracted] by the
square of the fraction received in the division. But this would be a quarter or more. For if
[the remainder] is equal to the root itself, and we divide it by double the root, the result of
the division will be a half. Its square (namely, its product by itself, which is the excess) will
then be an entire quarter. And if the remainder is greater than the root, when we divide it
by double the root the result will be more than a half, and its square more than a quarter.

Canpant.on gives the following example: without adding 1, the root of 6 is approximated
by 2 1

2 , whose square exceeds 6 by 1
4 ; if we add 1 to the denominator, we get 2 2

5 , whose square
is less than 6 by 2

5 × 3
5 , which is smaller than 1

4 .
If you divide [the remainder] by double the root plus 1, the square of the root will be less

than the sought number by the product of the quotient and its complement with respect to
one, which can never in any way reach a quarter. For the product of a portion of a line or a
number by its complement never reaches a quarter. Because if you multiply its half by its
half the result will be a quarter, and clearly, if you multiply its smaller portion by its larger
[complementary] portion, the product will not be a quarter but smaller than [a quarter] by
the square of their distances from half the line or the number.24

Canpant.on then gives examples for the above: 1
4 × 3

4 is smaller than 1
2 × 1

2 by 1
4 × 1

4 ; 5 × 7
is smaller than 6 × 6 by 1 × 1; 9 × 3 is smaller than 6 × 6 by 3 × 3. In the context of root
extraction, the following examples are given: the approximate root of 7 is 2 3

5 , and its square
is less than 7 by 3

5 × 2
5 = 1

5 + 1
5 × 1

5 ; the approximate root of 6 is 2 2
5 , and its square is less

than 6 by 2
5 × 3

5 = 1
5 + 1

5 × 1
5 .

24Canpant.on shows that when r is larger than or equal to a, the error term of the approximation a + r
2a exceeds 1

4 ,

whereas the error terms of the approximation a + r
2a+1 will be smaller than 1

4 . The reasoning goes through a
geometric interpretation, and an implicit reference to Elements II.5.
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The reason is that the remainder equals the result of division multiplied by twice
the [previous approximate] root plus one. . . . The addition of the result to the previous
[approximate] root, however, will add to the square its product by twice the previous root
and its product by itself. But its product by itself subtracted from its product by 1 is its
product by its complement [with respect to 1].25 (For example, the product of 1

3 by 1
equals its product by the parts [of 1], namely by 1

3 , which is itself, and by 2
3 , which is

its complement with respect to one; this is clear).
Canpant.on supplies an example for the reason we do not add one when the remainder is

small: if we approximate the root of 29 by 5 4
10 , the error is 16

100 = 1
4 − 9

100 ; if we approximate

it by 5 4
11 , the error will be 4

11 × 7
11 = 1

4 − 2 1
4

112 . The latter is clearly larger than the former. Then
Canpant.on repeats the instruction not to use the a + r

2a+1 approximation when conducting a
reiterated approximation. Finally, he suggests a different iterable approximation procedure
with its own error analysis. This last method is given without justification.

If you wish to approach the truth with little effort, add the remainder [i.e., the difference
between the given number and the integer part of the root] to the square of double the
[integer part of the] root at hand, and divide by it the product of the remainder and double
the [integer part of the] root. Add the result to the [integer part of the] root at hand, and
this root will be very near the truth. If you wish to approach the truth further, [divide] the
cube of the above remainder by the denominator squared.26

Canpant.on concludes with the calculation of the root of 3 according to this formula. The
integer approximating the root is 1, and the error term is 2. The approximation formula yields
1 + 2×1×2

(2×1)2+2
= 1 2

3 . The error term is indeed 23

((2×1)2+2)
2 = 2

9 . Then the procedure is reiterated

with 1 2
3 as the root and 2

9 as the error. The new approximation is 1 112
153 , and the resulting error

term is 2
1532 .

5. ELIJAH MIZRAH. I, SEFER HAMISPAR (THE BOOK OF NUMBER)

This section was prepared by Stela Segev
Elijah Mizrah. i (ca. 1450–1526), also known by the acronym ha-re↩em, was born in

Constantinople to a family from the Byzantine Empire, rather than from Spanish exiles. At the
time, and especially after the expulsion of the Jews from Spain in 1492, the Jewish community
of Constantinople was one of the largest and most important Jewish communities in the world.
Mizrah. i became a prominent personality in the community, holding many public positions
[Hacker, 2007; Ovadia, 1939].

25Here Canpant.on provides a proof of the error term formula r
2a+1 × 2a+1−r

2a+1 for the approximation

a + r
2a+1 . An anachronistic reconstruction of the argument alluded to here would be:

(
a + r

2a+1

)2 =
a2 + 2a × r

2a+1 + r
2a+1 × r

2a+1 = a2 + 2a × r
2a+1 + 1 × r

2a+1 −
(

1 − r
2a+1

)
× r

2a+1 = a2 + (2a + 1) ×
r

2a+1 −
(

1 − r
2a+1

)
× r

2a+1 = a2 + r −
(

1 − r
2a+1

)
× r

2a+1 .
26Canpant.on suggests the approximation a + 2ar

(2a)2+r
. This may have been obtained from a sort of interpolation

between the underestimate a and the overestimate a + r
2a in the form a + r

a+
(

a+ r
2a

) . The error term is calculated as

r3(
(2a)2+r

)2 .
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Mizrah. i was considered by his contemporaries and by later generations to be the most
important rabbinical authority in Constantinople and in the whole Ottoman Empire. He wrote
several treatises on religious subjects (e.g., a supercommentary on Rashi’s commentary on
the Torah), and he was also interested in scientific subjects. Besides The Book of Number, he
wrote a commentary on Ptolemy’s Almagest.27

Mizrah. i’s teacher in secular subjects was Mordechai Comtino, whose treatise On Reck-
oning and Measurement was one of the sources for The Book of Number. The Karaite
Calev Afendopolo, a colleague, was the author of a commentary on the Hebrew translation
of the Arithmetic of Nicomachus made from Arabic by Qalonymos ben Qalonymos in
1317.

Mizrah. i’s treatise, The Book of Number (also known as Melekhet Hamispar (The Number’s
Craft)), was widely used during his time as well as later. It can be read in seven extant manu-
scripts (some of them complete) as well as in the first print edition issued in Constantinople by
his son Israel after Mizrah. i’s death. The abridged version of the book was partially translated
into Latin [Münster, 1546], to be reprinted in 1809.28

This essay of approximately 200 pages consists of three articles dealing with arithmetic
operations on integer numbers, simple fractions, and sexagesimal fractions. It also includes
a chapter on square and cubic roots and on proportions, and a chapter of 99 arithmetic and
geometric problems.

For each of his subjects, Mizrah. i first defines and explains the arithmetic operations
and related notions, and then describes methods of solution accompanied by examples. He
accords special attention to verification techniques. In a separate section at the end of the
relevant chapter, Mizrah. i explains and proves his methods. This structure of the book certainly
facilitated the publication of the abridged sixteenth-century Latin edition, which contained
only the algorithms presented in the first two sections.

Mizrah. i based his work on many sources. He quoted Ibn Ezra, Euclid’s Elements, and
Nicomachus’s Arithmetic, but it appears that he read also other books, mostly in Hebrew but
possibly in other languages, too (Greek or Arabic). Evidently, he used Comtino’s treatise On
Reckoning and Measurement and also another arithmetic essay by Isaac ben Moshe ↪Ali titled
The Art of Number [Segev, 2010].

Calculating squares by the “thirds method” (from Article I, part 1)
In the section dealing with multiplication of integers, besides algorithms appropriate to
numbers written in the positional decimal system, Mizrah. i presents several methods of
oral calculation. The origin of these methods is not clear. Some of them can be found in
earlier Hebrew mathematicians, such as Ibn Ezra’s Sefer Hamispar (the thirds method) and
Comtino’s On Reckoning and Measurement manuscript (the thirds method and the fifths
method). These authors, however, present the methods without justification.29 Unlike his
predecessors, Mizrah. i gives a proof for each method he presents.

27Preserved in one manuscript in St. Petersburg, Institute of Oriental Studies of the Russian Academy, C 128.
28For an analysis, see [Segev, 2010] and [Wertheim, 1896].
29The “thirds method” can also be found in Gersonides’s Ma↩ase H. oshev, but there it appears only for integers

that are multiples of 3, and the explanation is based on a numerical example.
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The explanations are general and rely on Euclid’s geometric propositions from the
Elements, Book II, interpreted arithmetically. Mizrah. i sometimes quotes Euclid geometrically
from Ibn Tibbon’s Hebrew translation,30 but at other times, as here (like Comtino, his teacher),
he prefers an arithmetic-algebraic formulation. In this context, it is clear that he interprets
Euclid’s propositions as dealing with numbers.

Another way to multiply a [two-digit] number by itself: if it has a third, take the third,
multiply it by itself, and move the result one [decimal] level higher. Subtract from it the
third’s square. What remains is the result of multiplying the number by itself [the square
of the number].

As an example, if we want to multiply 24 by itself, we take one third of it: 8. Multiply it by
itself: 64. Move the result one level higher: 640. Then subtract 64 from it, and what remain
are 576. This is the square of 24.

If the number does not have a third, take the closest number which does have a third,
either larger or smaller than the given number, and proceed as before. Then, in the case
that the number which has a third was less than the given number, add to the result the
number which has a third and the given number; in the case that the number which has a
third was more than the given number, subtract them from the result.

The example with the number [having a third] which is less than the given number is
25, because the closest number which has a third is 24. We take its third and multiply it
by itself as before and we get 576. We add the given number and the number which has
a third and we get 625, which is the square of 25. In the example with a number [having
a third] which is more than the given number, we choose 23. We take the closest number
which has a third, 24, proceed as before and we get 576. Then we subtract from it the
given number and the number which has a third, which is 47; the result is 529 which is
the square of 23. The method can be used for all numbers.

· · ·

[This way of] taking the square of the number’s third and moving the result one level
higher, then subtracting from it the third’s square—the reason for it is known, and is
explained by Euclid’s Elements, Book VIII. For any two square numbers, the ratio of
one to the other is equal to the ratio of their sides multiplied by itself.31 It follows that
the ratio of the number’s third squared to the number squared is equal to the ratio
of the number’s third to the number itself, all squared. And the ratio of the number’s third
to the number is a third, and a third multiplied by itself is a ninth. So, necessarily, the ratio
of the number’s third squared to the number squared is a ninth. It follows that the square
of the given number will be nine times the number’s third squared. Raising the third’s
square one level, we will get ten times the number’s third squared. Subtracting from it one
third squared, the remainder will be equal to the square of the given number, since it is
equal to nine times the number’s third squared, because any two magnitudes whose ratio
is one are necessarily equal according to Euclid’s Elements. 32

30Moses ibn Tibbon translated The Elements from Arabic into Hebrew in 1270.
31Elements VIII.5. Euclid’s proposition is a more general one, and Mizrah. i infers from it this particular formula.
3210

( x
3

)2 − ( x
3

)2 = 9
( x

3

)2 = x2.
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· · ·

But if the given number doesn’t have a third, we use another number that has a third,
which is larger or smaller than the given number by one. The reason for this is also clear. It
is well known that the difference between the squares of two numbers is equal to the sum
of the two numbers multiplied by their difference.33 And the product of the two numbers
is equal to the product of the smaller number by itself added to the product of the smaller
number by the difference between the two given numbers, as is written in Book II of
Euclid.34 And the product of the greater number by itself is equal to the product of the
greater number by the smaller one, added to the product of their difference by the greater
number, for the same reason.35 It follows necessarily that the greater number multiplied
by itself is equal to the sum of three multiplications: the product of the smaller number
by itself, the product of the greater number by the difference, and the product of the
smaller number by the difference.36 The last two products are equal to the product of
the difference by the sum of the two given numbers, according to the previous argument.
So, necessarily, the greater number multiplied by itself is equal to the smaller number
multiplied by itself added to the difference multiplied by the sum of the two numbers.37

Therefore, if the required number is greater by one than a number which has a third,
it is necessary to add the given number and the number which is smaller than it by one
and the square of the number which has a third. The sum is the required square. If the
required number is greater by two than a number which has a third, add the given number
and the number which is smaller than it by two, multiply the result by two and add to it the
square of the number which has a third; this is the required square. If the required number
is greater by three, multiply by three the sum of the given number and the number which
is smaller than it by three and add it to the square of the number which has a third. And
so on in all cases.38

But if we work with thirds, we have only numbers which are greater or smaller than
the required number by one, for if a number is greater by two than a number which has a
third, the same is smaller by one than another number which has a third. And that is the
reason the ancients chose to use the thirds . . . so there will be no need to multiply the
sum of the given number with the number which has a third.

But if we use the fifth (or other parts) there will be cases in which it will be necessary
to multiply the sum of the two numbers. I therefore wonder why they chose the fifth part,
and not any other, when this method is common to all parts.

Summing the first n integers and cubes (from Article I, part 1)
In the section on multiplication, Mizrah. i presents the sums of several kinds of arithmetic and
geometric progressions, as well as of squares and cubes of the first n integers. The sums and

33Elements II.5, b2 − a2 = (b + a)(b − a).
34Elements II.3, ba = a2 + a (b − a).
35Elements II.2, b2 = ba + (b − a) b.
36From the previous two results, b2 = ba + (b − a) b =

(
a2 + a (b − a)

)
+ b (b − a).

37From the above, b2 = a2 + (b + a) (b − a). Note the similarity to Elements II.5 above, which is brought up
explicitly but is not used in the argument.

38(a + n)2 = ((a + n) + a) n + a2. This could also be obtained directly from Elements II.6.
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their proofs do not use any algebraic terminology or symbolism. Some proofs are based on
figurate numbers, but others, like the example below, have a more abstract character, and
present original arguments not found in the work of previous authors. Mizrah. i’s use of the
“recursive” identities like 1+2+...+v

v+1 = 1+2+...+(v−1)

n + 1
2 or 13+23+...+n3

1+2+...+n = 13+23+...+(n−1)3

1+2+...+(n−1)
+ n

clearly illustrates some original pre-inductive reasoning.
But the way the ancients used to sum the natural numbers, that is to multiply the last

number by its half added to half, is self-evident. For if you take any number and divide the
sum of all its preceding numbers by the number itself you will receive the quotient of the
sum of all the numbers preceding the preceding number divided by the preceding number
when you add to this quotient a half.39 So the quotient of one divided by two is half, and
the quotient of the sum of one and two divided by three is one integer, and the quotient of
the sum of one, two, three divided by four is one and a half, and the quotient of the sum
of one, two, three, four divided by five is two, and so on. We always add half.

Therefore, when you want to know the sum of all natural numbers from one to any
number, because the quotient of the sum of the preceding numbers divided by the last
number will be equal to the sum of the halves added in each step, as we have seen
before, we must count the steps from one to the given number. Up to two we have half,
and up to three we have one, and up to four we have one and a half, and so on until the
last number. And so the quotient of the sum of the preceding numbers divided by the last
number will be equal to the former result, and if we multiply this former result with the last
number, we receive the sum we wanted.

· · ·

But the other kind, the cubes of natural numbers, the ancients knew a way to sum them
as well: take the cubic root of the last cube, and follow the former way to sum the natural
numbers which are the cubic roots of those cubes, and save the result. Then multiply the
saved result by itself; this is the sum of the given cubes.40

For example, if you want to know the sum of 1, 8, 27, 64, the cubes of 1, 2, 3, 4, take the
cubic root of 64, which is 4, multiply it by half the number of steps [i.e., the given cubes]
added to half, you receive 10. Multiply 10 by itself, the result is 100, and this is the sum of
the numbers 1, 8, 27, 64.

· · ·

The way they used to add the cubes of natural numbers by multiplying the sum of their
cubic roots by itself—its reason is known as well. For if you take the quotient of the sum of
the cubes and the sum of their cubic roots, the result is larger than the quotient of the sum
of the cubes previous to the last cube and the sum of their cubic roots by the last cubic
root.41 And so on, each quotient is greater than the previous quotient by the last cubic

39 1 + 2 + . . . + v

v + 1
= 1 + 2 + . . . + (v − 1)

n
+ 1

2
.

4013 + 23 + . . . + n3 = (1 + 2 + . . . + n)2 =
(

n(n+1)
2

)2
.

41 13 + 23 + . . . + n3

1 + 2 + . . . + n
= 13 + 23 + . . . + (n − 1)3

1 + 2 + . . . + (n − 1)
+ n.
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root until we reach the first cube [13]. It means that the numbers added at every step are
the natural numbers.

We skip Mizrah. i’s verification of the statement expressed in the previous footnote for sums
up to the first four cubes, a verification very similar to what follows.

Therefore the ratio of the cube of 1 and its cubic root [1] is 1 (namely, they are equal),
and the ratio of 1, 8 and the sum of their cubic roots [1 + 2] is 3 (namely 3 times, being
the former result 1, to which we add 2), and the ratio of 1, 8, 27 and the sum of their cubic
roots [1 + 2 + 3] is 6 (namely, 6 times, being the former result 1, 2, to which we add 3),
and the ratio of 1, 8, 27, 64 and the sum of their cubic roots [1+ 2 + 3 + 4] is 10 (namely,
10 times, being the former result 1, 2, 3, to which we add 4), and so on, always in the
same way.42

So if we want to add the cubes of the [natural] numbers, as many as they are, we take
the cubic root of the last cube and we multiply it by its half added to half, and the result is
the sum of the cubic roots of the given cubes. Next we want to know the number of steps
from the first cube to the last one, and we take 1 for the first step [cube], 2 for the second,
3 for the third, 4 for the fourth and so on until we reach the last cube. Next we add all
these numbers and this is the quotient of the sum of cubes and the sum of their cubic
roots. We therefore multiply the sum of the cubic roots by the sum of the natural numbers
(i.e. the sum of the steps) and we receive the sum of the given cubes.

Simple fractions (from Article I, Parts 1 and 2)
The concept of simple fractions underwent many changes over the centuries before it
reached the form we use today. The ancient Egyptians used mostly unit fractions, while the
Babylonians used the sexagesimal system not only for integers but also for numbers less than
one. Fractions that are written with the numerator above the denominator (but without the
horizontal line in between) can be found starting from the ninth century in several Arabic texts,
and even earlier in Indian texts.43 The algorithms used for different calculations were often
cumbersome and the definitions inconsistent. In contrast, Mizrah. i presents a well-articulated
concept of fractions and sometimes argues with previous authors, as in the following excerpt.
The algorithms for calculations presented by Mizrah. i (most of them still in use today) are
meticulously explained using propositions from Euclid or Nicomachus. Note, however, that
unlike the Greeks, Mizrah. i does not seem to distinguish ratios from fractions and quotients.

42

13 + 23

1 + 2
= 13

1
+ 2 = 1 + 2

13 + 23 + 33

1 + 2 + 3
= 13 + 23

1 + 2
+ 3 = 1 + 2 + 3

13 + 23 + 33 + 43

1 + 2 + 3 + 4
= 13 + 23 + 33

1 + 2 + 3
+ 4 = 1 + 2 + 3 + 4

...

43The origin of writing fractions vertically probably has to do with the way the division operation was written.
The horizontal bar used in the writing of fractions can be found for the first time in the work of al-H. as.ār from the
twelfth century. We can also find this vertical notation in Indian writings from the sixth century [Djebbar, 1992;
Mazars, 1992].
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In this short excerpt Mizrah. i compares a “relative” notion of fraction (one whole number
with respect to another) and an absolute one (parts of the actual unit). He endorses only the
former.

I saw some contemporaries who think that the wholes are numbers from one onward,
such as one or two or three or any other number, and that fractions are smaller than one,
such as half of one or a third or a quarter, or another part of one. Regarding the issue of
the parts of one they are right only in one aspect, that is relatively, but they were wrong
in thinking of the relative as if it were absolute. That is, they were right when dealing with
parts of the whole one, but this “one,” you should know that it can be any number we
name a whole, because any number can be thought of as a whole in relation to its parts.
For example, two with respect to eight is a quarter of eight, and indeed we call the two
a quarter of eight when the eight is the whole and the two is the part, the eight being
four times two. It [the eight] is the one [whole] whose fractions we calculate, but it [the
eight] is not the real one which is indivisible. Now a general definition should include all
special cases, whereas if there are two kinds of numbers, wholes and fractions, and if
the fractions are parts of the indivisible one, then the definition of the number as the sum
of units is contradicted, because the real one [unit] is not a number and neither are its
fractions.

In the next excerpt Mizrah. i proves the standard fraction multiplication algorithm.
And I say that the general way to multiply [all kinds of fractions] is to multiply the

numerator with the numerator and save the result, then multiply the denominator with
the denominator44 and save the result, and the ratio of the first number you saved to the
second one is the fraction or fractions that result from the multiplication.

· · ·

The reason for this method, to multiply the numerator with the numerator and the
denominator with the denominator, is evident if we know five propositions.

The first of them is that if you take any fraction and multiply its numerator and its
denominator by the same arbitrary number, the ratio of the results will be the given fraction
relating the original numerator and denominator. The same holds for division. That is, if
you divide the numerator and the denominator in arbitrarily many equal parts, and you
take an equal number45 of parts of the numerator and the denominator, and you set the
ratio of these parts of the numerator to the parts of the denominator, then this new fraction
will be equal to the given fraction relating the undivided numerator and denominator. And
the reason is in the Elements of Euclid, Book V,46 stating that equimultiplied parts relate
to each other as their parts relate to each other. The proof is common to both.

The second proposition is that saying that we multiply one fraction by another is like
saying that we take a fraction from another. This is obvious.

44Mizrah. i uses the terms “quantity” and “quality” for the numerator and denominator, respectively.
45We read “number” where the text has “parts.” According to this reconstruction, Mizrah. i tries to combine the

statements about multiplication and division into one.
46Elements V.15: a

b = ac
bc or a

b = a/c
b/c .
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The third proposition is that for any number which is multiplied by another, the first
number to the product is a fraction derived from the name of the second number.47 For
example, the number two, when multiplied by three, is six. The two will be a third of six,
where the name “third” is derived from “three,” which multiplies the two. This is explained
also in the book of Nicomachus.

The fourth proposition is that if you want to take a part from a fraction, take this part
from the numerator of the fraction, and the ratio of this to the denominator of the given
fraction is the part taken.48 For example, if you want to take a third from nine tenths, take
a third from nine, which is three, relate them to the tenths, and they make three tenths.
This is always so, and is obvious.

The fifth proposition is that if you want to multiply a fraction however many times, take
the ratio of the multiplied numerator to the denominator, and the result is the product of the
multiplied fraction.49 For example, if you want to multiply two ninths by three, we multiply
two by three, which is six, and relate them to the ninths, yielding six ninths. This is the
result of two ninths multiplied by three, and this is also obvious.

Now that you’ve understood these propositions, the reason for this multiplication is as
clear as can be. If we multiply, for example, three quarters by two ninths, it is the same
as taking three quarters of two ninths, according to the second proposition. If we could
divide the numerator of the two ninths by four to get its quarter, we would take this quarter
and relate it to the denominator, and the result would be the quarter of the two ninths
according to the fourth proposition. Then we would multiply the numerator by three, and
get three quarters of two ninths according to the fifth proposition.

But because the numerator of the two ninths is not divisible by four, we have to multiply
it by four (which is the denominator of the three quarters), so that the product of two and
four becomes divisible by four. And having done that, we have to multiply also the nine
(which is the denominator of the two ninths), by the denominator four, so that the ratio
of the products of two and of nine by four equals the two ninths according to the first
proposition. We now take the ratio of a quarter of the resulting numerator (which is the
product of the numerator by the denominator) and the resulting denominator (which is the
product of the denominator by the denominator), and this is a quarter of the two ninths
according to the fourth proposition. Then we multiply its numerator by three, and this will
be three quarters of two ninths, according to the fifth proposition.

Word problems (from Article III, part 1, chapter 1)
In the third article of his book Mizrah. i presents about 100 problems and their solutions. He
classifies them in two categories: number problems and geometric problems. The so-called
number problems actually deal with a wide range of topics and present various techniques
for solving them. Many of them are standard problems that can be found in earlier books, but
Mizrah. i’s treatment tends to be deep and well reasoned.

The questions selected here are two mathematical riddles about combining and comparing
the money of two or three people. Mizrah. i solves one with proportion theory and the other

47If ab = c, then a
c = 1

b .
48( a

b

)
/c = a/c

b .
49 a

b × c = a·c
b .
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with algebraic-like manipulations (other authors solve them with ad hoc manipulations or
double false positioning).

Question [15]: A man told his friend, if you give me one, I will have as much as you. His
friend answered: if you give me one, I will have twice as much as you.50 How much does
each one have?51

The answer is that this question is also misleading, because it posits that which
determines for that which is determined.52 Here we need the ratio of the two [coins] set
apart (one from each man) to the money of both, rather than the ratio of the two [coins] set
apart together with the money of the first to the money of the second with one subtracted.
However, because the latter ratio determines the ratio between the number two and all
the money [of both men], he took one for the other. This is self-evident if we consider the
money of both men together as one amount, and set apart two, one from the first man
and the other from the second, which are what each said he would give to the other. The
money of both men is then divided into three parts: the two set apart by both, the money
of the first less one, and the money of the second less one.53 From this we can determine
the answer.

The first man saying to his friend: “if you give me one, I will have as much as you” is
the same as if he said: “if I add to my money54 the two [coins] set apart (the one you want
to give me and the one I want to give you), the result will be the same as the amount you
have less one. Therefore the money of the first man together with the two set apart, which
are two of the three parts composing all the money, will necessarily be half of the money
composed of the three parts, because the two former parts together equal the third part.55

The second man saying to his friend: “if you give me one, I will have twice as much as
you,” is the same as if he said: “if I add to my money the two set apart, the sum will be
equal to twice the rest of your money.” Therefore the money of the second added to the
two set apart will necessarily equal two thirds of the money composed of the three parts,
as the two former parts are twice the third part.56

So the money of the first man is a third of all the money composed of the three parts,
and we have already seen that half of all the money is equal to the money of the first man
together with the two set apart. Therefore the difference between the half and the third,
which is a sixth [of all the money], equals two, which is what we wanted to find: the ratio
between the two set apart and all the money. 57

So we apply ratios:58 if one sixth equals two, how much is the whole? This yields
twelve. We have already said that the money is composed of three parts: the two set

50We omit a variation where the parameters are 2 and 100 instead of 1 and 2.
51For a version of this problem by Fibonacci, see Chapter 1, section II-3-2.
52This is oddly phrased. In what follows Mizrah. i suggests that to solve the question, one must transform the data

so that it fits a standard Rule of Three procedure. If x is the money of the first man and y the money of the second, we
are given the ratios (x + 1) :(y − 1) and (y + 1) :(x − 1), whereas we need the ratio 2 :(x + y).

53By considering the parts a = 2, b = x − 1 and c = y − 1, we have as data the ratios (a + b) :c and (a + c) :b,
and require the ratio a :(b + c).

54From here on the money of the partners is considered as x – 1 and y – 1, instead of x and y.
55(x − 1) + 2 = (y − 1), so (x − 1) + 2 = 1

2 ((x − 1) + 2 + (y − 1)).
56(y − 1) + 2 = 2 (x − 1), so (y − 1) + 2 = 2

3 ((y − 1) + 2 + (x − 1)) .
57(x − 1) = 1

3 ((x − 1) + (y − 1) + 2) and (x − 1) + 2 = 1
2 ((x − 1) + (y − 1) + 2), so 2 = 1

6 (x + y) .
58This is Mizrah. i’s term for what is known as the Rule of Three.
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apart, the money of the first man, and the money of the second, and that the sum of
the two and the money of the first is half of all the money. So, necessarily, the money of
the first man together with the two set apart is six, which are half of twelve. And if we
take away the two added to the money of the first, there remain four, the money of the
first. So the money of the second will be six. And if we give to each the coin we took,
the first will have five and the second will have seven, and this is the money they each
have.

Question [35]: Reuven, Simon and Levi went to the fish market and found a fish.
Reuven said to his friends: If I gave all my money, and each of you gave half of yours,
we could buy the fish. Simon answered and said: If I gave all my money, and each of
you gave a third of yours, we could buy the fish. Levi answered and said: If I gave all my
money, and each of you gave a quarter of yours, we could buy the fish. What is the ratio
between their money, that is, the ratio of each to each?59

The answer is that this question is misleading, because the problem omits the ratio
between the money of each and the others’, stating instead facts that determine them.
So if we obtain what is determined by the facts stated in the problem, we will arrive at the
answer.

We say that the statements of Reuven and Simon determine that half of Simon’s
money equals two thirds of Reuven’s and one sixth of Levi’s. Therefore Simon’s entire
money equals one and a third of Reuven’s and a third of Levi’s. That is because all of
Reuven’s money together with half of the others’, as Reuven says, equals all of Simon’s
money together with a third of the others’, as Simon says. Therefore, what Simon added
to Reuven’s statement—a half of his [Simon’s] money—equals what he removed from
Reuven’s total—two thirds of Reuven’s—and to what he removed from half of Levi’s
money—one sixth of Levi’s.60

In the same way, according to Reuven’s and Levi’s statements, it is determined that half
of Levi’s money equals three quarters of Reuven’s and one quarter of Simon’s. Therefore,
in the same ratio, a third of Levi’s money equals half of Reuven’s and a sixth of Simon’s.61

We already know that Simon’s money equals one and a third of Reuven’s and a
third of Levi’s. Therefore Simon’s money equals one and five sixths of Reuven’s and
one sixth of Simon’s own. We remove one sixth of Simon’s which is common [to both
sides], and remain with five sixths of Simon’s money being equal to one and five sixths of
Reuven’s. According to the same ratio, all of Simon’s money equals twice Reuven’s and its
fifth.62

Therefore it is determined that if Reuven had five, Simon would have eleven. We
already saw that half of Levi’s money equals three quarters of Reuven’s and one quarter

59Here, if a is the money of Reuven, b is Simon’s money, c is Levi’s money, and d is the price of the fish, we can
write three equations for this problem: a + 1

2 b + 1
2 c = d, b + 1

3 a + 1
3 c = d, and c + 1

4 a + 1
4 b = d. For a version of

this problem by Fibonacci, see section II-2-2 in Chapter 1. For Levi ben Gershon’s abstract version, see section I-6
in this chapter.

60a + 1
2 b + 1

2 c = b + 1
3 a + 1

3 c, so the excess of the right hand over the left hand, which is 1
2 b, equals what the

right hand removes from the left hand, namely, 2
3 a + 1

6 c. We rescale by two and obtain b = 1 1
3 a + 1

3 c.
61By comparing the second and third identities, we get 1

2 c = 3
4 a + 1

4 b. Rescaling the last identity by two-thirds,

we obtain 1
3 c = 1

2 a + 1
6 b.

62By substitution, b = 1 1
3 a + 1

3 c = 1 1
3 a +

(
1
2 a + 1

6 b
)

. Rearranging yields 5
6 b = 1 5

6 a, or b = 2 1
5 a.
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Fig. I-6-1. The Tel Aviv Ralbag street honors Levi ben Gershon. Under his dates, the sign
reads, “Acronym for the name of Rabbi Levi ben Gershon: Philosopher, Mathematician,
Astronomer, and Commentator on the Bible.” Photograph by Phyllis Katz.

of Simon’s. This ratio determines that all of Levi’s money will be one and a half of Reuven’s
and half of Simon’s. So it is determined that if Reuven had five and Simon had eleven, as
we have already seen, Levi would have thirteen. This determines the price of the fish to
be seventeen.

6. LEVI BEN GERSHON, MA↩ASE H. OSHEV (THE ART OF THE CALCULATOR)

Levi ben Gershon (1288–1344), who lived his entire life near Orange in Provence, was one
of the most prominent medieval Jewish scientists, besides also being a rabbi, philosopher, and
biblical commentator. In Jewish circles, he is known by the acronym Ralbag, and in Latin
circles as Gersonides [Fig. I-6-1]. He wrote numerous commentaries on the Hebrew Bible, a
book on logic, four mathematical treatises, and a major philosophical work, Milh. amot Adonay
(Wars of the Lord), which includes a section on trigonometry as part of a longer section
on astronomy, in which he criticizes some of the ideas of Ptolemy. During Levi’s lifetime,
the Jews in Provence (about 15,000 out of a total population of 2,000,000) were under the
protection of the pope, then residing in Avignon. Levi was well regarded by the Christian
community as a scientist, and some of his works were translated into Latin during his lifetime,
although Levi himself probably did not know the language.63

Ma↩ase H. oshev64 is Levi’s first book on mathematics and is dated 1321, with a second
edition the following year that had minor changes in organization and presentation.65 The
work exists today in twelve manuscripts, nine of the first edition and three of the second.

63See [Freudenthal, 1992] for more details on Levi’s life and work.
64The title means, literally, “Thoughtful Application,” a biblical reference (Exodus 26:1 and 28:6) to the kind of

work used in building the Tabernacle. In the context of that building, this is work that requires thought, planning, and
calculation rather than only technical craftsmanship.

65The discovery of the second edition is discussed in [Simonson, 2000b].
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The oldest manuscript is Parma 2271, a first edition manuscript, estimated to have been
written in Provence late in the fourteenth century. The critical edition and German translation
by Gerson Lange of 1909 was based primarily on the Vienna manuscript of 1462, also of
the first edition. Ma↩ase H. oshev is in two parts followed by a large collection of problems.
The first part is theoretical, containing 68 theorems and problems in Euclidean style dealing
with arithmetic and combinatorics, with some of the proofs being accomplished by a form
of mathematical induction [Rabinovitch, 1970]. Its style is reminiscent of the arithmetic of
Jordanus de Nemore (see section II-2-5 of Chapter 1). The second part contains algorithms
for calculation and is subdivided into six sections.

Introduction
Signed Levi ben Gershon. In order to acquire a complete ability to do practical crafts, one
needs to know the craft—a craft with knowledge of technique, and why to use a particular
technique. The practical part of the craft of numbers is one of the practical crafts. So it
is clear that it is worthwhile to investigate its theory. Another reason why it is mandatory
to investigate this craft and its given theory, is that it is clear that this craft encompasses
many different kinds, and each and every kind encompasses many diverse topics, so
that you might think they are not all part of the same kind. Because of this, it is clear
that you will not complete your acquisition without knowledge of the theory, except with
great difficulty. However, with knowledge of the theory, it is possible to complete your
acquisition with ease. This is so, because he who knows the theory can, with a single
view, understand the practical characteristics of each of the many kinds that the craft
encompasses, and he who masters the theory will require just a single view in place of
many views for the various topics. Accordingly, we see fit to present the manipulation of
numbers and its theory, for our benefit. Along this line of thought, I have divided this book
into two sections.

Section One focuses on the principles needed to understand this craft. Section Two
focuses on the practical craft of manipulating numbers, one kind at a time, and the
explanations. And since this book focuses on application and investigation, it is called
Ma↩ase H. oshev.

However, as far as the instruction in this book is concerned, it is appropriate that he
who concerns himself with it should already understand the 7th, 8th, and 9th books of
Euclid. It is not our intention to repeat his words in our book, but instead to assume his
principles in our development, as they were proved there.

· · ·

Arithmetic with proofs (from part I)
This section contains many elementary and less elementary arithmetical facts and problems.
Levi endows each fact or problem with a proof in his contemporary adaptation of the
Euclidean style, using letters to refer to the quantities discussed but not operating on
these letters algebraically. Some proofs depend on recursive calculation and inductive
procedures.
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1. The product resulting from the multiplication of two numbers one with the other
counts every part of the first number as many times as there are ones in the second
number.66

2. When you have two given numbers, and one is partitioned into some number of
parts, then the product of the first number with the second equals the products of each
part of the first number with the second number, all added together.67

The given numbers are AB and C, with AB divided into the parts AE, ED, DB. I assert
that the product of AB with C is equal to the sum of the products of AE with C, ED with C,
and DB with C. In the product of AE with C, the factor C occurs as often as the units in
AE; also the factor C occurs in the product of DE with C as often as the units in DE and in
the product of DB and C as often as the units in DB. In AE, ED and DB together, however,
are just as many units as in AB. Thus in the sum of the products, C is a factor as often as
the units in AB. Therefore, in the product of AB with C, C occurs as often as the units in
AB. Thus the product of AB with C is equal to the sum of these products.

· · ·

9. When you multiply one number by a number built68 from two given numbers and
the result is something, then if you multiply a number built from any two of these three
numbers by the third number, the result will be the same.

10. When you multiply one number by a number built from three given numbers and
the result is some number, then if you multiply any one of these numbers by the number
built from the remaining three, the result will be the same.69

Multiply A by the number built from CDE, giving FG. I am saying that if you multiply
D by the number built from ACE, the result will also be FG. The proof is that we divide
FG into parts corresponding to the numbers CDE and these parts are FI, IL, LG, then the
number of parts is like the number of units in A. And, each one of the parts FI, IL, LG
counts D like the amount of the product CE. And this is explained by what came earlier
[theorem 9]. Now FG counts D as much as all its parts together, but all its parts together
count D like the value of the product CE multiplied by A. Therefore, FG in total counts D
like the number built from ACE. And therefore, the product of D with the number built from
ACE is FG also.

And similarly it can be explained that whichever of these numbers is multiplied by the
number built from the rest, the result will be FG. And like this, the progression can be
understood without limit. What I mean to say is that if you multiply a certain number by a
number built from four numbers, and let that be some number, then if you multiply any one
of these numbers by the number built from the remaining numbers, then the result will be
the same. And therefore, the number resulting from the multiplication of any number by

66That is, ab = a + . . . + a, b times.
67(a1 + a2 + . . . + an) b = a1b + a2b + . . . + anb.
68The word translated as “built” is murkav—defined by Levi as the product or composite of the two numbers. This

theorem asserts the associativity and commutativity of multiplication of three numbers. The proof uses theorem 1.
69This theorem generalizes theorem 9 to four numbers, and then uses a form of mathematical induction to

generalize to n numbers.
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the number built from the rest counts the number like the value of the number built from
the rest.

· · ·

17. If you subtract from a given number a given part or given parts and take from the
remainder another given part or given parts and so forth, then the final remainder will be
the same and the sum of the pieces taken will be the same, no matter in what order the
parts are taken.

Let A be the given number, the parts having denominators B, C, D, and let the Bth part
of A be subtracted, then E Cth parts from the remainder, and F Dth parts from the next
remainder. I say that the sum of the Bth part of A, E Cth parts of the remainder, and F Dth
parts of this remainder is equal to F Dth parts of A added to the Bth part of the remainder
and E Cth parts of that remainder.70

For the proof we set G to be the number preceding B, and further let the units of the
sum of the numbers E and H equal C and the numbers F and I equal D. Let the Bth part
of A equal P, and the remainder of that from A be J; let E Cth parts of J be K and let L be
the next remainder; finally let F Dth parts of L equal M, with N being the final remainder.
Also, let F Dth parts of A equal Q, with remainder R, the Bth part of R equal S, with
remainder T, and H Cth parts of T equal U, with remainder V. We claim that N equals V.
The proof: Because P is equal to the Bth part of A, therefore A has as many parts equal
to P as B has units. But G is equal to the number preceding B, so J has as many parts
equal to P as G has units. Also, we know that A is to J as B is to G, since the product of
B by P is A and the product of G by P is J. Now set the Cth part of J equal to W, so K
has as many parts equal to W as E has units, and therefore L has as many parts equal
to W as H has units. It is shown similarly that J is to L as C is to H and therefore that L
is to N as D is to I. So it is proved that the ratio of A to N is composed of the ratios of
the numbers B, C, D to the numbers G, H, I.71 Similarly, it is proved that the ratio of A to
V is composed of the ratios of the numbers D, B, C to the numbers I, G, H;72 but this
ratio is equal to the ratio composed of the numbers B, C, D to the numbers G, H, I, so the
ratios of A to N and to V are the same; so N equals V. Therefore, it must also be true that
the sum of the numbers P, K, M equals the sum of the numbers Q, S, U. The difference
between A and N is equal to the sum of P, K, M, and the difference between A and V is
equal to the sum of Q, S, U; but it has been shown that N equals V, so must the sums of
P, K, M and Q, S, U be equal.

26. When you add, beginning with one, consecutive numbers, and if the number of
these is even, then the sum is equal to the product of half the number with the number
following the last one.73

70 1
B A+ E

C

(
A − 1

B A
)
+ F

D

[
A − 1

B A − E
C

(
A − 1

B A
)]

= F
D A+ 1

B

(
A − F

D A
)
+ E

C

[
A − F

D A − 1
B

(
A − F

D A
)]

.
71Since B :G = A :J, C :H = J :L, and D : I = L :N, the composition (B :G)(C :H)(D : I) = (A :J)(J :L)

(L :N) = A :N.
72Since D : I = A :Q, B :G = Q :S, and C :H = S :V , the composition (D : I)(B :G)(C :H) = (A :Q)(Q :S)

(S :V) = A :V .
731 + 2 + . . . + n = n

2 (n + 1), where n is even.
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Let the numbers be A, B, C, D, E, F,74 with the number following F being G, and A
being one. I say that the sum of A, B, C, D, E, F is equal to the product of half their
number with G. For proof, since A is one, the sum of F and A is G. Since the difference
between B and one is equal to the difference between F and E, namely one, the sum of
B and E is G. Also the difference between C and one is equal to the difference between
F and D, so the sum of C and D is also G. Thus in the sum of A, B, C, D, E, F, the factor
G occurs as often as half of the number, since the sum of each pair of these numbers is
equal to G.

27. When you add consecutive numbers beginning with one, and if the number of these
is odd, then the sum is equal to the product of the middle number with the last number.

28. When you begin a sequence of consecutive numbers with one and add together
an odd number of terms, multiply half of the last number with the number following it. This
product is equal to the sum of the numbers.75

30. When you add the sum of the consecutive numbers from one up to a given number
to the sum of the numbers up to the number following that number, then the total is equal
to the square of the number following the given number.76

When you add the sum of the numbers A, B, C, D, E to the sum of the numbers A, B,
C, D, E, F, with A being one, then the total is equal to the square of F. To prove this, let
G be the number following F. It has already been proved that the sum of A, B, C, D, E is
equal to the product of half of E with F [theorem 28] and that the sum of A, B, C, D, E, F
is equal to the product of half of F with G [theorem 26]. But the product of half of F with
G is equal to the product of half of G with F, since the factors are in the same proportion.
So if you add the sum of A, B, C, D, E to the sum of A, B, C, D, E, F, this is the sum of
the product of half of E with F and the product of half of G with F, which is equal to the
product of half the sum of E and G with F. But since the sum of E and G is equal to twice
F, its half is equal to F. So the sum of the sum of A, B, C, D, E with the sum of A, B, C,
D, E, F is equal to the product of F with F, that is, the square of F.

38. When you multiply a given number minus one third of the number that precedes
it by the sum of the consecutive numbers from one through the given number, the result
equals the sum of the squares of the consecutive numbers from one through the given
number.77

The following two theorems present a proof in inductive style of the formula for the sum
of the cubes of consecutive integers beginning with 1. Notice that the inductive step is proved
first.

74Levi proves many of the following results by the method of generalizable example, since he has no way of
representing an arbitrary integer. Given that the letters of the Hebrew alphabet can represent numbers, it is not entirely
clear whether one should translate the beginning of the proofs by using letters or by using the numbers they might
represent. We decided to use letters when Levi specifically notes that A (or aleph) is one, as in theorems 26 and 30,
while using numbers when Levi does not so note (as in theorems 41 and 42).

751 + 2 + . . . + n = n
2 (n + 1), where n is odd. In theorem 27, Levi shows that the sum of each pair at equal

distance from the middle term is equal to twice that term. Then in theorem 28, he notes that twice the middle term is
equal to n + 1, so the product of the middle term with n is equal to the product of twice the middle term with half of
n, that is, “half of the last number with the number following it.”

76(1 + 2 + . . . + n) + (1 + 2 + . . . + n + (n + 1)) = (n + 1)2.
77

(
n − n−1

3

)
(1 + 2 + 3 + . . . + n) = 12 + 22 + 32 + . . . + n2. We omit the proof, which depends on several

earlier theorems.
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41. The square of the sum of consecutive numbers from one up to a given number
equals the cube of the given number added to the square of the sum of the consecutive
numbers from one up to the number before the given number.

Let the numbers be 1, 2, 3, 4, 5. I say that the square of the sum of 1, 2, 3, 4, 5 equals
the cube of 5 added to the square of the sum of 1, 2, 3, 4. The cube of 5 is computed by
counting 5 once for each unit in the square of 5. But the square of 5 equals the sum of 1, 2,
3, 4 added to the sum of 1, 2, 3, 4, 5 [theorem 30]. So 5 times the sum of 1, 2, 3, 4 added
to the sum of 1, 2, 3, 4, 5 equals the cube of 5. But 5 times the sum of 1, 2, 3, 4 added to
the sum 1, 2, 3, 4, 5 equals the sum of 5 times 5, that is, the square of 5, and the product
of 5 with the sum of 1, 2, 3, 4 and 1, 2, 3, 4, that is, twice 5 times the sum of 1, 2, 3, 4.
So the cube of 5 equals the square of 5 plus twice 5 times the sum of 1, 2, 3, 4. Also, the
square of the sum of 1, 2, 3, 4, 5 equals the square of 5 plus twice 5 times the sum of 1, 2,
3, 4 plus the square of the sum of 1, 2, 3, 4. Therefore the cube of 5 plus the square of the
sum of 1, 2, 3, 4 equals the square of the sum of 1, 2, 3, 4, 5, and this is what we wanted.
Finally, we know that one has no number before it. However, its cube equals the square of
the sum of the numbers up to it because it is exactly the sum of the number up to it, and
hence it is exactly the square of this sum. And this is identical to its cube. This is perfectly
trivial.

42. The square of the sum of consecutive numbers from one up to a given number
equals the sum of the cubes of the consecutive numbers from one up to the given
number.

Let the sum be the sum of 1, 2, 3, 4, 5. I say that the square of the sum of 1, 2, 3,
4, 5 is equal to the sum of the cubes of the numbers 1, 2, 3, 4, and 5. The proof is that
the square of the sum of 1, 2, 3, 4, 5 equals the sum of the cube of 5 and the square
of the sum of 1, 2, 3, 4 [theorem 41]. But the square of the sum of 1, 2, 3, 4 equals the
sum of the cube of 4 and the square of the sum of 1, 2, 3. And the square of the sum
of 1, 2, 3 equals the sum of the cube of 3 and the square of the sum of 1, 2. And the
square of the sum of 1, 2 equals the sum of the cube of 2 and the square of 1, and the
square of 1 equals the cube of 1. Therefore, the square of the sum of 1, 2, 3, 4, 5 equals
the sum of the cubes of the numbers 1, 2, 3, 4, and 5. And that is what we wanted to
prove.

· · ·

53. Problem: To find three numbers such that the first, increased by a given part of the
sum of the other two, equals the second, increased by another, also given, smaller part of
the sum of the other two, and equals the third, increased by a given third part of the sum
of both others that is smaller than the other two parts.78

78The problem is to find three numbers G, H, I such that G + 1
A (H + I) = H + 1

B (G + I) = I + 1
C (G + H),

where A < B < C. Levi gives a general, abstract solution to this problem, which also appears in Diophantus’s
Arithmetica, Book I, #24 (see Appendix 2). However, Levi’s solution is very different from that of Diophantus. In
a “real-world” form, the problem becomes a recreational problem about three men buying a horse; see Fibonacci in
section II-2-2 of Chapter 1 for an example, as well as the work of Mizrah. i above. The problem also occurs in the work
of al-Karajı̄ around the year 1000 [Woepcke, 1853, p. 95]. Levi solves this under two separate conditions, first with
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· · ·

58. Problem: To find three numbers such that the sum of the first and third contains the
second as a factor as many times as a given number and such that the sum of the second
and third contains the first as a factor as many times as a second given number.79

Let the given numbers be A, B. We denote the number following A by C; this is the first
number. We denote the number following B by D; this is the second number. We take the
product of A with B, subtract one and designate this by E; this is the third number. I say
that C, D, E are the three sought numbers. We show that the sum of C and E is A times
the factor D and the sum of D and E is B times the factor C. Since E is equal to one less
than the product of A and B, and C is equal to the sum of one and A, then the sum of C
and E is equal to the sum of A with the product of A, B. But the sum of A with the product
of A, B is equal to the product of A and D. So the sum of G and E is equal to the product
of A and D and therefore is A times the factor D. Furthermore, E is equal to one less than
the product of A and B, and D is equal to the sum of B and one, so the sum of D and E is
equal to the sum of B with the product of A, B. But the sum of B with the product of A, B
is equal to the product of C and B, so the sum of D and E is equal to the product of C and
B. The product of C and B contains B times the factor C. So the sum of D and E contains
B times the factor C, and the sum of C and E contains A times the factor D. And this is
what we wanted to show.

Decimal-sexagesimal subtraction (from part II, chapter 1)
We present an example of a subtraction problem with sexagesimal fractions. In the example,
“firsts” mean sixtieths, “seconds” mean 3600ths, and so on. But note that Levi writes the
whole numbers out in words while using the Hebrew alphabet numerals to write out the
fractions. The discussion ends with the possibility of subtracting larger numbers from smaller
numbers in circular contexts (e.g., angles, days of the week).

We want to subtract two hundred six wholes, fifty firsts, 37 thirds from 31 thousand and
eighty wholes, 46 seconds, 35 thirds, 47 fourths, 53 sixths.

0 10 7 9 45
3 1 0 8 0 0 46 35 47 0 53

2 0 6 50 0 37
3 0 8 7 3 10 45 58 47 0 53

A = 2 and second with A > 2. However, the solutions are the same in each case: G = (A − 2) BC + C + B − A, H =
G + 2 (B − A) (C − 1) , I = H + 2 (C − B) (A − 1) . We omit Levi’s detailed proof that these are the correct values.

79The problem is to find three numbers C, D, E so that C + E = AD and D + E = BC, with A, B given numbers.
As before, Levi gives a general, abstract solution to the problem. However, this problem appeared earlier as a
recreational problem about two men finding a purse; see Fibonacci in section II-2-2 of Chapter 1 for an example.
The problem also occurs in the ninth-century work of the Indian mathematician Mahāvı̄ra [Rangācārya, 1912, verse
244]. (See Appendix 3.) Note that the problem as stated is an indeterminate one, but Levi only gives one solution.
However, when Levi uses this proposition in problem 18 at the end of the book (see below), he shows how to
determine a particular solution when one of the unknowns must have a given value.
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In the lowest category are the sixths. In that, in the higher row, are 53 sixths. We
subtract from that what is in the lower row, but there is nothing, so write 53 in the row of
results in the category of sixths. Then we subtract from the 0, that comes next to the 53,
what lies below that in the lower row; but there is nothing in the lower row, so write 0 in
the row of results in the category of fifths. Then we subtract from the 47 what lies below
that in the lower row, but there is nothing, so write 47 in the row of results in the category
of fourths. Then we subtract from the 35 in the upper row what lies below in the lower row,
which is 37. That cannot be subtracted from 35, so we take one from the category that
comes next to 35. So this becomes 60 in this category, which is added to 35, so becomes
95. We subtract 37 from this, so there remain 58. We write that in the row of results in
the category of thirds. Now there is left 45 in the following category. We subtract from this
what lies below it in the lower row, but there is nothing, so write 45 in the row of results
in the category of seconds. There remains now from the 0 to subtract what lies below in
the lower row. But 50 is there and we cannot subtract 50 from 0, and also in the category
of the whole numbers, that lies next, is nothing that we can bring over. But in the third
category from the one in question is a number, namely 8. We take one away from that
and put it in the category to the right. We write 7 over the 8 and the 1, that we took away,
becomes 10 in the first category. Take one of these into the category of firsts, so there
remain 9 in the first category, which we write over the 0. The 1, which was taken, becomes
60 in the category of firsts. From that we subtract 50, so there remain 10, which we write
in the row of results in the category of firsts. Now we subtract from the 9 what lies below
it in the lower row. That is 6, so there remain 3 which we write in the final row under the
units. Furthermore, we subtract from the 7 what lies below in the lower row; there remain
7 because there was 0 there. So we write that in the row of results for the tens. Further
we subtract from 0 what lies below in the lower row. That is 2, but we cannot subtract 2
from 0. In the next category is 1, so we take that, which is in this category equal to 10. We
write above the 1 a 0, and subtract 2 from the 10. There remain 8, which we write in the
row of results in the category of hundreds. Then we subtract from the 0 what lies below in
the lower row. But that is 0, so we write 0 in the row of results in the fourth category. Then
we subtract from the 3 what lies below in the lower row. That is, however, 0, so we write
3 in the row of results in the fifth category. So the result is thirty thousand eight hundred
and seventy three wholes, 10 firsts, 45 seconds, 58 thirds, 47 fourths, 53 sixths. Do the
same in similar cases.

Sometimes it can occur in geometric calculations that you must subtract a greater
number from a smaller, and indeed that happens in astronomy. You then add the value
of the circle circumference, which is equal to 360, to the smaller number, from which you
want to subtract, and then you can subtract what you wish, because there is no number
in astronomical calculations that is larger than 360. For if it happens that a number will
be larger than 360, one takes away that much and uses only the remainder. Such a
calculation also appears in the ordinary new moon calculation. If one must subtract a
greater number from a smaller number, one adds 7 days to the smaller number, and then
you can subtract what you wish, since if the calculator of the new moon obtains a number
larger than 7 days, he subtracts off the 7 days and uses only the remainder. Do the same
in similar cases.
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Mental multiplication technique (from part II, chapter 2)
The basic idea here is a trick for multiplying two digit numbers. It is based on the identity
(a + b) (c − b) + ((a + b) − c) b = ac, where b may be an added or a subtracted number.
Choosing b such that a + b is a multiple of 10 simplifies the mental calculation.

To make it easier for you, I will give you a number of ways with which to calculate
the multiplication of one number by another easily. You already know that multiplying a
number of the first rank by a number of the first rank is an easy task, and so is multiplying
a “broken” number. By that I mean multiplying a number of the first and second ranks by
a number of the first rank.80 But if you want to multiply one broken number by another
broken number, complete one of the numbers to the side that is closest. If you added to
this number in order to complete it to the nearest ten, subtract from the other number the
amount that you added to the first number, and multiply what is left by the number in your
hand, and save the result. If you subtracted from this number in order to complete it, add
to the other number the amount you subtracted from the first number, and multiply what
remains in your hand by the completed number that is in your hand. After this, look at
how much the larger number after the addition or subtraction exceeds the smaller number
before the correction. Multiply this excess by the amount you added to one of the numbers,
and save the result. This is the second saved value. After this, look at the number that you
subtracted. If you subtracted from the big number, then subtract the second saved value
from the first saved value, and what remains in your hand is the desired result. If you
added to the big number, then add the second saved number to the saved first number,
and that is the desired result.

I will give you some examples. We want to multiply 34 by 57. Complete the number
57 to the nearest ten to get 60. Since 60 exceeds 57 by three, subtract three from 34
to get 31. Multiply 31 by 60 to get one thousand eight hundred and sixty, and that is the
first saved value. Since 60 exceeds 34 by 26, we multiply 26 by three and that is 78,
the second saved value. Since we added to the large number, we add the second saved
value to the first saved value and that is one thousand nine hundred and 38, which is the
desired result.

In this example of ours, if we lowered 57 to the ten below it, we get 50, and we add
7 to 34 to get 41. We multiply 41 by 50 to get two thousand and fifty, and that is the first
saved value. Since 50 exceeds 34 by 16, we multiply 16 by 7 to get 112, and that is the
second saved value. Since we subtracted from the big number, we subtract the second
saved value from the first saved value, leaving one thousand 9 hundred and 38, which is
the desired result.

· · ·

Sometimes it will happen that when using this method you will multiply a number by
itself, and then this method will make things very easy. For example, you need to multiply
43 by 57. If you complete 43 to 50, you subtract the amount of the completion from 57 to

80By a number of the “first rank,” Levi means a number less than 10; a number of the “second rank” is a multiple
of 10, while a “broken” number is a two-digit number with neither digit equal to 0.
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get 50. You will need to multiply 50 by 50 and subtract 7 squared from the result, leaving
the desired result. This is very clear from the earlier material at the start of part one of
this book. May you understand and discover.

Summing arithmetic and geometric series (from part II, chapter 3)
If you want to add the consecutive numbers from 1 through a given number, take half the
square of the given number and add it to half the given number, and that is the desired
result. For example, if you want to add one, two, three, four, and so on until ten, including
ten, take half the square of ten and half of it to get 55, and that is the desired result.
Another way is to multiply this number by half the number that follows it, or half the number
by the number that follows it, and that is the desired result. In our example, multiply 10 by
half of 11, or half of 10 by 11, to get 55, which is the desired result.81

If the numbers follow one another but not [starting with one], that is, if the first is a given
number, and the second is twice the given number, and the third is three times that number,
and so on until some number [that is, if the numbers are in an arithmetic sequence
beginning with the common difference], add up all the numbers until this number in the
previous manner, and multiply the result by the first given number, and that is the desired
result.82

For example, suppose that the first is 7 and the second 14 and the third 21 and the
fourth 28, and continue in this way through 9 numbers. You already know that the sum
of consecutive numbers from one through nine is 45. Multiply this by 7, which is the first
number, to get 315, and that is the desired result.

This is so because the ratio of one to the first is equal to the ratio of two to the second
and to the ratio of three to the third and to the ratio of four to the fourth and to the ratio of
five to the fifth and to the ratio of six to the sixth and to the ratio of seven to the seventh
and to the ratio of eight to the eighth and to the ratio of nine to the ninth. But the ratio of
one to its neighbor is equal to the ratio of all to all. Therefore, the ratio of one to seven
is like the ratio of all to all. But seven counts one as many times as there are ones in
seven, therefore all of these numbers count 45 as many times as there are ones in seven.
Therefore, simply multiply the number 45 by 7 and the result is equal to the sum of these
numbers. Ponder this.

· · ·

If you want to add the squares of consecutive numbers from one through a given
number, take the given number less one third of the number that precedes it, and multiply
this by the sum of the consecutive numbers through the given number.83 For example, if
you want to know the sum of the squares of the consecutive numbers through 5, since
the number preceding five is four, we subtract one third of four, which is 4 thirds, leaving

811 + 2 + 3 + . . . + n = n2

2 + n
2 = n × n+1

2 = n
2 × (n + 1).

82a + 2a + 3a + . . . + na = (1 + 2 + 3 + . . . + n) a.
8312 + 22 + . . . + n2 =

(
n − n−1

3

)
(1 + 2 + . . . + n).
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four less a third. Multiply this by 15, which is the sum of the consecutives through 5, and
you get 55, which is the desired result.

· · ·

If you want to add the cubes of consecutive numbers from one through a given number,
take the square of the sum of the consecutive numbers from one through the given
number, and the result is what is desired.84 For example, if you want to know the sum of
the cubes of the numbers from one through six, the sum of the consecutives from one
through six is 21, and taking its square gives 441, the desired result.

If the numbers [form an arithmetic sequence beginning with the common difference]
and there are a given number for which we want to know the sum of their cubes, find the
sum of the cubes of the consecutive numbers from 1 up to the given number and multiply
this by the cube of the first number; that is the desired result.85 The reason for this has
already been given earlier. For example, suppose the first number is 4, the second 8,
and we follow this law for five numbers. We know that the sum of the third powers of the
consecutive numbers up to 5 is equal to 225. We multiply this by 64, the third power of the
first number. The result is 14400, which is the desired result.

· · ·

Levi next gives rules and examples for summing arithmetic sequences whose first term is
not equal to the common difference. He then supplies similar rules for their squares and cubes.

If you want to add a given number of cubes of numbers in an arithmetic sequence
whose first term differs from the common difference by a second given number, then if
the first number is less than the common difference, take the sum of the squares of these
numbers and multiply the result by the triple of the second given number, and save the
result. Also, multiply three times the square of the second given number by the sum of
these numbers, and save this result. Then, multiply the cube of the second given number
by the first number, and add the result to the two earlier saved values, and you have
in your hand the adjusted first saved value. After this, take the sum of the cubes of the
numbers from 1 through the first given number, and multiply it by the cube of the common
difference. Finally, subtract the adjusted saved value from this value, and what remains is
the desired result.86

For example, if we want to add the cubes of seven numbers, where each number is
three greater than its predecessor, and the first is two less than three, then we know that
the sum of the squares of these numbers is 952. Multiply this by three times two, which is
six, to get 5712, and save this. And also, the sum of these numbers is 70. Multiply this by
three times two squared, which is 12, to get 840, and save that. Also, multiply the cube of
two, which is eight, by 7, to get 56. Add this to the two saved values to get 6608, which is

8413 + 23 + . . . + n3 = (1 + 2 + . . . + n)2.
85a3 + (2a)3 + . . . + (na)3 = a3

(
13 + 23 + . . . + n3

)
.

86If d is the common difference, a the first term, and t = d – a, then this algorithm depends on the formula
(dk − t)3 = [(dk − t) + t]3 − 3 (dk − t)2 t − 3 (dk − t) t2 − t3.
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the adjusted saved value. We calculate the sum of the cubes of the consecutive numbers
from one through seven to get 784. Multiply this by 27, which is the cube of three, to get
21168. Subtract from this the adjusted saved value, and what is left equals 14540, and
that is the desired result.87

If the first number exceeds the common difference by a second given number, take
the sum of the given number of consecutive numbers in the arithmetic sequence with
the given common difference [and beginning with that common difference]. You already
know the manner of doing this from what preceded. Multiply the result by three times the
square of the second given number, and save the result. Then take the sum of the given
number of squares of consecutive numbers in the [same] arithmetic sequence with the
given common difference, and multiply the result by three times the second given number,
and save the result. Finally, multiply the cube of the second given number by the first given
number and add the result to the two saved values. The result is the first adjusted saved
value. After this, take the sum of the given number of cubes of consecutive numbers of
the [same] arithmetic sequence with the given common difference, and add it to the first
adjusted saved number. This is the desired result.

As a model, consider our previous example, where my intention is that the first number
exceeds the common difference by two. We know that the sum of seven consecutive
squares beginning with three with a common difference of three is 1260. Multiply 1260
by three times the second given number, which is 6, resulting in 7560, and save this
result. And also, the sum of seven consecutive numbers [beginning with three] and with
an increase of three is 84. Multiply this by three times the square of the second given
number, which is 12, to get 1008. And save this result too. Finally, multiply the cube of the
second given number, which is 8, by the first given number, which is 7, to get 56. Add this
to the two saved values to get 8624 which is the first adjusted value. Next, the sum of the
cubes of the seven numbers with an increase of three is 21168. Add this to the adjusted
first value to get 29792, and that is the desired result.88

This is true, because if we subtract 2 from each term, we form an arithmetic sequence
with difference 3 [and beginning with 3]. The cube of each term is, however, less than the
cube of the original increased term by the triple product of the square of the number with
2, increased by the triple product of the term with the square of 2 and by the cube of 2. If
we add these to all the terms, we get what we have asserted and you will find this so. You
can find the reason in the other case with a bit of thought.

· · ·

If you want to add a given number of terms of a geometric sequence with given ratio,
subtract the first from the second and then the ratio of this difference to the first term
is equal to the ratio of the difference between the last and first terms to the sum of the

8713 + 43 + 73 + 103 + 133 + 163 + 193 =
(

13 + 23 + 33 + 43 + 53 + 63 + 73
)

× 33 −[(
12 + 42 + 72 + 102 + 132 + 162 + 192

)
× 3 × 2 + (1 + 4 + 7 + 10 + 13 + 16 + 19) × 3 × 22 + 23 × 7

]
.

8853 + 83 + 113 + 143 + 173 + 203 + 233 =
(

33 + 63 + 93 + 123 + 153 + 183 + 213
)

+[(
32 + 62 + 92 + 122 + 152 + 182 + 212

)
× 3 × 2 + (3 + 6 + 9 + 12 + 15 + 18 + 21) × 3 × 22 + 23 × 7

]
.
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entire sequence [up to the term before the last], as is proved at the end of the 9th book
of Euclid. As an example, if you wanted to add six proportional numbers with ratio 3 and
with first term 4, you already know that the second is 12, and the last is 972. Subtract the
first, which is 4, from the second, leaving eight. The ratio of 4 to 8 is one half. Subtract 4
from the last leaving 968. Taking half gives 484, and adding to 972 gives 1456, which is
the desired result.

Variations on the Rule of Three (from part II, chapter 6)
You already know that with every four proportional numbers, the product of the first with
the fourth equals the product of the second with the third. As this is so, it should be clear
to you when given some numbers, and given a second number that is a multiple of one
of these numbers, how to extract the rest of the multiples so that the multiples are in the
same previous given ratio. It is worth knowing that if you multiply one of the numbers by
the given second number, and divide by the number of which it is a multiple, you get the
multiple of the number that you multiplied by the second given number.

For example, given the numbers A, B, C, D, E, and G, a multiple of D, we want to find
multiples of A, B, C, D, E. Multiply G by A, and divide by D, giving H, because the product
of A and G equals the product of H and D. So the ratio of A to D is equal to the ratio of
H to G, and by exchanging, the ratio of A to H is equal to the ratio of D to G. Similarly, it is
clear that if you multiply B by G and divide by D, the result I is the multiple for B. So you
can multiply C by G and divide by D to get J, the multiple for C. And, you can multiply E
by G and divide by D, to get K, the multiple for E. So we have found the multiples of A, B,
C, D, E, and they are H, I, J, G, K. It is clear that H, I, J, G, K are proportional to A, B, C,
D, E, as was to be proved.

Also, if no number of the proportional numbers was known to us, but we did know the
sum of two or three of them, then that is enough to get the numbers. For example, say you
know in our last example that the sum of H, G, K equals M. We want to get the multiples
of the given numbers A, B, C, D, E. Take the sum of the numbers of which H, G, K are
multiples, namely A, D, E, and call this N. The ratio of N to M is equal to the ratio of A,
B, C, D, E to their multiples. Accordingly, multiply M by A and divide by N, to get H. And
in this way, we find the numbers I, J, G, K. I claim that the numbers H, I, J, G, K are the
desired numbers.

· · ·

The author writes: this completes the sixth chapter of this work, and with its completion,
the book is complete. And the praise is to God alone. And its completion was on the first
of the month of Nisan in the year 81 of the 6th millennium, when I reached the 33rd year
of my years. And bless the Helper. [The year was 5081, i.e., 1321].

Problem section
Many of the problems that Levi brings are standard problems common to many of his contem-
porary and predecessor mathematical cultures (Arabic, Indian, Chinese, and Mesopotamian).
Note, however, that Levi formulates his problems in abstract terms, and does not shy away
from elaborate calculations with fractions.
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6. A certain full container has various holes in it. One of the holes lets the contents of
the container drain out in a given time; a second hole lets the contents drain in a second
given time; and so on for each of the holes. All the holes are opened together. How much
time will it take to empty the container?

First, calculate what drains from each hole in one hour and add the values all together.
Note the ratio of this to the full container. This ratio equals the ratio of one hour to the time
needed to empty the container.

For example, a barrel has various holes: the first hole empties the full barrel in 3 days;
the second hole empties the full barrel in 5 days; another hole empties the full barrel in
20 hours; and another empties the full barrel in 12 hours. Therefore, the first hole empties
one of 72 parts of the barrel in an hour; the second hole, one of 120 parts; the third hole,
one of 20 parts; and the fourth hole, one of 12 parts. When we add them all up, the total
that empties from all the holes in an hour is 56 of 360 parts of the full barrel. We divide
360 by 56, to get 6 whole and 25 firsts and 43 seconds. Therefore, the time to empty the
barrel is approximately 6 hours, 25 firsts,89 and 43 seconds. The reason for this is clear.

13. One man hires another to work a given number of days, for a fixed wage. This job
requires the hiring of a certain number of men per day, each of whom leads a certain
number of animals, each of which carries a given number of measures and walks a given
distance. The hired man deviates from some or all of these numbers. How much should
his wages be?

Take the product of all the values that were stipulated, and make a note of it.
Furthermore, take the product of the actual values that were accomplished; and the ratio
of the number you noted to this product equals the ratio of the wages he promised him to
the wages he owes him.

For example, Reuven hired Simon to work 9 days for 10 litra. The job stipulated the
hiring of 13 men each day, each of whom leads seven animals, each of which carries
15 measures and walks 6 parsas.90 Simon provided 8 days, 17 men, each of whom led
6 animals, each of which carried 11 measures and walked 7 parsas. The product of the
stipulated numbers, 9, 13, 7, 15, and 6 equals 73 thousand and 710, which is noted.
The product of the accomplished numbers, 8, 17, 6, 11, and 7, equals 62 thousand and
832. The ratio of 10 litra to what he owes him equals the ratio of the noted value to 62
thousand and 832. If you multiply 10 litra, the first number, by the fourth number, which
is 62 thousand and 832, and you divide the result by the noted value, you will get the
number of litras and fractions of a litra that he owes him. This is 8 and one half litra,
and a thousand and 7 hundred and 85 of 73 thousand and 710 parts of a litra, which
is 5 pashuts and 59 thousand and 850 of 73 thousand and 710 parts of a pashut.

This is right, because the ratio of what he owes to what he stipulated equals the ratio
of what he did to what he agreed to do. And the ratio of what he did to what he agreed
to do is composed of the ratios of the numbers that were stipulated to the corresponding
numbers that were accomplished. This composed ratio, as we already explained, equals

89Firsts refer here to minutes.
90 Litra is a coin denomination which contains 20 dinars, each dinar containing 12 pashut.s. (See footnote 11.) A

Parsa is a distance unit.
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the ratio of the product of the stipulated numbers to the product of the numbers that were
accomplished. Use this as a model.

As noted above, problem 18 is an abstract version of the “men finding a purse” problem, a
problem that seems to have appeared first in India (see Appendix 3), but is also found in the
work of Leonardo of Pisa and other medieval European mathematicians. The original version
of the problem was indeterminate, but Levi shows here how to find a definite answer if one is
given one additional specific piece of information.

18. We add one number to a second number; and the ratio of the result to a third
number is given. When we add the first number to the third number, the ratio of the result
to the second number is a second given number. One of the three numbers is known.
What is each of the remaining numbers?

You already know how to find three numbers that correctly meet these conditions, so
extract them.91 Since you know one of the numbers corresponding to one of the three,
you can extract the other corresponding numbers, and that is what was requested.

For example, when you add the first number to the second number, its ratio to the third
equals 3 wholes and 2 fifths and a seventh. When the first is added to the third, its ratio
to the second equals 7 wholes and 2 thirds and a fourth. The second number is 30. We
want to know: what is the value of each remaining number?

First of all, extract three numbers, using the procedure described in part one of this
book. Accordingly, subtract one from the product of 3 wholes and 2 fifths and a seventh
with 7 wholes and 2 thirds and a fourth. This leaves 27 wholes and a third of a seventh,
which is the first number. Add one to 3 wholes and 2 fifths and a seventh, to get 4 wholes
and 2 fifths and a seventh, which is the second number. Also, add one to 7 wholes and
2 thirds and a fourth, and the result you get is the third number, which is 8 wholes and
2 thirds and a fourth. You already know that the number corresponding to the second
number is 30.

First Second Third
27 wholes and a third of 4 wholes and 2 fifths and a 8 wholes and 2 thirds and a
a seventh seventh fourth
178 wholes and 98 of 30 58 wholes and 281 of 318
159 parts of one parts of one

Thus the number corresponding to the first is 178 wholes and 98 of 159 parts of one;
and the number corresponding to the third is 58 wholes and 281 of 318 parts of one.
These three numbers are what were requested, so investigate and find them.

· · ·

We will explain why these corresponding numbers are the desired ones. This is
because the ratio of the first of the former numbers to the second of them equals the
ratio of the first of the latter numbers to the second of them; and the ratio of the second

91See part I, problem 58 above.
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of the former numbers to the third of them equals the ratio of the second of the latter
numbers to the third of them. The compound of these ratios equals the ratio of the first of
the former numbers to the third, which equals the ratio of the first of the latter numbers
to the third. By adding these together, the ratio of the sum of the first and second former
numbers to the third equals the ratio of the sum of the first and second latter numbers to
the third. But in our example, the ratio of the sum of the first and second former numbers
to the third is 3 wholes and 2 fifths and a seventh. Hence the ratio of the sum of the first
and second latter numbers to the third is 3 wholes and 2 fifths and a seventh. Similarly,
the ratio of the sum of the first and third former numbers to the second is 7 wholes and 2
thirds and a fourth. Use this as a model.

II. NUMEROLOGY, COMBINATORICS, AND NUMBER THEORY

Numbers were not only treated as mathematical entities—they were also given natural and
mystical significance. An excerpt from Ibn Ezra’s Book of One shows how the different
approaches intermingled in scholarship. We follow with two discussions of combinatorics.
In the first, Ibn Ezra calculates the number of possible conjunctions of a given number of
planets from among the seven planets. In the second, Levi ben Gershon engages in an abstract
and general discussion of permutations and combinations. We proceed with Levi’s elegant
treatment of harmonic numbers, showing that different products of powers of two and three
cannot have difference one, except for the four known harmonic couples. We end with a
discussion of amicable numbers in the Hebrew literature.

1. ABRAHAM IBN EZRA, SEFER HA’EH. AD (THE BOOK OF ONE)

This book by Abraham ibn Ezra (see section I-1) summarizes knowledge about numbers
from various mathematical disciplines, along with other natural sciences. It also has clear
mystical overtones and is written in a terse style that is sometimes hard to fathom.1 This
translation covers the treatment of the number 4.

Four is the first visible square.2 It is the first even-even [of the form 2n with n even], and
it is the first composite [non-prime number]. Indeed, the first decimal order [ma↪arekhet]
consists of nine [digits], wherein one is the foundation of counting, leaving four primes:
2, 3, 5, and 7, and the other four composite. Its sum with the numbers that precede it
[1 + 2 + 3 + 4] is ten, which is the beginning of the analogous multiple [klal, the next
decimal order].3 Four is their root [the base of the triangular number 10].

Since numbers unto a prime are like unto an indivisible unit, it is opposite; such are
2 and 5, 3 and 6, 4 and 7, and so on without end.4 Therefore, the fourth astrological sign
is the opposite of the first; for heat and cold are active [properties of the four elements],

1For the various meanings of numbers in Ibn Ezra’s work, see [Langermann and Simonson, 2000].
2Although one is also a square, it is not so “visibly,” since its root is equal to itself.
3Compare the opening of The Book of Number (section I-1).
4This is a possibly corrupt, baffling statement. It might suggest that integers which, like 1 and 4, are three apart,

are opposite to each other in that one is prime and the other is not. But this would work only as far as 5 and 8. Another
interpretation is that such numbers are opposite in that one is even and the other odd. The next sentences validate this
opposition from an astrological point of view.
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whereas the remaining two, wet and dry, are passive.5 Every fourth sign is the opposite of
the first in the active [property], but the fiery signs alone are the opposite both in active and
passive properties].6 For this reason the astrologers say that the quartile aspect [pairs of
signs that are three apart] is enmity.

A sextile aspect [pairs of signs that are two apart] is half-friendship, for the third sign
is identical in the active property of the element to the first, but opposite in the passive;
therefore, they say that it is half-friendship. Trine [pairs of signs that are four apart] is
complete friendship, for at the trine aspect is the fifth sign, which has the same element
as the first. Therefore, it is the aspect of complete friendship in the active and the passive.
And so 1 and 5, since both preserve themselves;7 likewise 2 and 6, since both are even-
odd [of the form 2n with n odd]; and so also 3 and 7, since neither are even, and their
components are similar.8 Not so, however, are 1 and 3, 2 and 4, and 3 and 5.9

Opposition [the aspect of half the orb, where signs are six apart] (and half-wise the
quartile aspect [where signs are 3 apart]), are aspects of enmity in the passive property.10

Do not be puzzled that the seventh house [which is in opposition to the first] indicates
one’s mate [↪ezer, woman]; as the author of Sefer Yes. ira said: A.M.Sh. for male, and
A.Sh.M. for female.11

Now the orb, which is one, is divided by its diameter. If the diameter too is cut [in half],
the aspect is quartile. If you place a point at the fourth [of the diameter and construct the
perpendicular chord], the orb will be divided into three equal sections, forming a triangle.
Its half is one-sixth of the orb. No other number can divide it [the circle] except in thought
or with fractions.12

Four is the beginning of non-equilateral acute triangles. All subsequent consecutive
numbers follows its rule.13 Now in the first obtuse triangle [sides 2, 3, 4] the [square on

5The signs are divided as follows: Aries, Leo, and Sagittarius are fire signs (hot and dry); Taurus, Virgo, and
Capricorn are earth signs (cold and dry); Gemini, Libra, and Aquarius are air signs (hot and wet); and Cancer,
Scorpio, and Pisces are water signs (cold and wet).

6A pair of signs that are three apart (like 1 = Libra and 4 = Aries) is always in opposition with respect to the
active property of its element (hot/cold). A pair that begins with a fire or air sign is opposite also with respect to the
passive property (dry/wet). The text should probably have “fire and air” rather than “fire.”

7That is to say, 1, 5, and other numbers having either of these as their final digit will preserve their final digit in
all higher powers.

8According to Comtino, they are similar insofar as both are sums of consecutive odd and even numbers:
3 = 1 + 2, and 7 = 3 + 4.

9Comtino suggests that this means that we cannot find any full and satisfactory similarity between these pairs,
such as were found for the pairs listed above.

10Opposition is the aspect of enmity in the passive, whereas the quartile aspect is an aspect of enmity in the
passive only for pairs starting with fire or air signs.

11The first house is associated with masculinity, and its opposite, the seventh, with femininity. This is also the case
with the permutations of the letters A.M.Sh in Sefer Yesira: the first is associated with masculinity, and its opposite
among the six possible permutations, which is the fourth permutation A.Sh.M., is associated with femininity. Sefer
Yesira (the Book of Creation; see [Kaplan, 1995]) is a mystical treatise concerning the creative power of letter and
number combinations.

12The text differs slightly among versions and suggests different readings. In this reading it is claimed that 12
can’t be divided without remainder except by 2, 3, 4, and 6. According to another reading, the point is to show that
divisions by four (first of the circle, then of the diameter) can produce the quartile, trine, and sextile aspects.

13In the previous sections, the triangles with sides 2, 3, 4 (obtuse) and 3, 4, 5 (right angle) were discussed. The
triangle with sides 4, 5, 6 is acute, and so are all the following triangles with consecutive side lengths.
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the] longest side exceeds the [sum of the squares on the other] two by the numerical
value of the middle [42 − (

22 + 32
) = 3], but in the acute [triangle] the longest side falls

short by the numerical value of the middle [that is, in the triangle 4, 5, 6 we have:
42 + 52 − 62 = 5]. I will now give you a rule. Given three consecutive numbers, the
smallest of which is at least four, and you wish to know by how much the [sum of the
squares of] the two [smaller sides] exceeds the [square of] the longest, always subtract
four from the middle and multiply what remains by the middle. For example, 10, 11, 12.
We subtract 4 from 11, leaving 7; we multiply it by 11, producing 77. It is the deficiency
of the square on the longest side [with respect to the squares on the two smaller sides;
102 + 112 − 122 = 77].

Know that some angles [of triangles whose sides are integer triplets] are very wide;
others are close to being right-angles, for example, 4, 8, 9. Likewise there are acute
[angles] which are half of a right angle, or a third or as little as one degree. But do not
think that you can form a triangle out of any [set of three] number[s] that you want. For an
acute [triangle with consecutive side lengths] cannot have [a side] which is less than 4.
Nor can one side of a triangle be greater than [the sum] of the two [other sides]. Nor
can there be a right triangle in which the numerical values of the sides are distant [from
each other]. They are either one set [of consecutive numbers], such as 3, 4, 5 and their
multiples; or the two smaller sides are consecutive, for example, 20, 21, 29; or the greater
ones are consecutive, as in 5, 12, 13.14 There are very obtuse triangles, such as 10, 17,
26, and slightly [obtuse], such as 10, 23, 26. Look at 10, 24, 26 [which has a right angle];
but 10, 25, 26 is slightly acute. Hence we can form neither a right nor an acute [triangle]
in which the sides are distant.

I shall now give you a rule. Know that by reckoning in the first order [i.e., numbers 1–9],
there are 84 triangles with no two equal sides, but only 33 of them are true. Likewise, not
all [possible] isosceles triangles are true.

Four is the first non-prime [sheni, literally, “secondary”].15 Therefore even numbers are
always non-prime, that is, composite, except for the number 2, due to the power of the
one, which is its main influence. Every number multiplied by 1 will not increase [1 times
n is n], since it [1] is the essence of every number. Therefore, the first square is 4. Every
square multiplied by a square is a square, and divided by a square, is a square; the ratio
of a square to a square is also a square. Therefore, the measures of all of the scholars
are in squares.16

2. ABRAHAM IBN EZRA, SEFER HA↩OLAM (BOOK OF THE WORLD)

Sefer Ha↪olam (Book of the World) by Ibn Ezra discusses the meaning of celestial
conjunctions and aspects. It opens by counting all possible conjunctions of the seven known
planets, demonstrating some systematic combinatorial reasoning. To calculate the number of
different sets of n elements out of 7 planets, a recursive method is used, taking partial sums

14Since there obviously are right triangles where the sides are not multiples of triplets with a consecutive pair
(e.g., 12, 35, 37), the meaning of “distant” here and in the final sentence of this paragraph is not quite clear.

15At the beginning of this text, Ibn Ezra had used the term murkav, which we translate as “composite,” rather
than sheni (secondary) used here. He thus transmits both Greek terms, deuteros and sunthetos.

16This is yet another baffling or corrupt sentence. It might refer to the measurements of areas.
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of the sequence 1,2, . . . ,7, then taking partial sums of the sequence of these partial sums, and
so forth. In this text Ibn Ezra does not mention the symmetry between the combinations of
k elements out of 7 and of 7 − k elements of 7, but he does note this symmetry and uses it
to simplify calculations in his later long commentary to Exodus 33:21 [Ibn Ezra, 1991]. This
excerpt was previously translated and analyzed in [Ginsburg and Smith, 1922].

If you come across Abu Ma↪ashar’s17 Book on the Conjunctions18 of the Planets, you
would neither like it nor trust it, because he relies on the mean motion for the planetary
conjunctions. No scholar concurs with him, because the truth is that the conjunctions
should be reckoned with respect to the zodiac. Nor should you trust the planetary
conjunctions calculated according to the [astronomical] tables of the Indian scholars,
because they are wholly incorrect. Rather, the correct approach is to rely on the tables of
the scholars of every generation who rely on experience.

There are 120 conjunctions [of the seven planets].19 You can calculate their number
in the following manner: it is known that you can calculate the number that is the sum [of
all the whole numbers] from one to any other number you wish by multiplying this number
by [the sum of] half its value plus one-half. As an illustration, [suppose] we want to find the
sum [of all the whole numbers] from 1 to 20. We multiply 20 by [the sum of] half its value,
which is 10, plus one-half, and this yields the number 210.

We begin by finding the number of double conjunctions, meaning the combinations of
only two planets. It is known that there are seven planets. Thus Saturn has 6 [double]
conjunctions with the other planets. [Jupiter has 5 double conjunctions with its lower
planets, Mars has 4, and so on. So we need to add the numbers from 1 to 6]. Hence
we multiply 6 by [the sum of] half its value plus one-half, and the result is 21, and this is
the number of double conjunctions.

We want to find the [number of] triple conjunctions. We begin by taking Jupiter and
Saturn, and [then take] any of the other five [planets] with them; the result is the number 5.
[Then we move on to conjunctions composed of Saturn, Mars and with one of the lower
four, then Saturn and the Sun with one of the lower three and so on. Altogether], we
multiply it [5] by 3, which is [the sum of] half its value plus one-half, and the result is 15,
and those are Saturn’s [ternary] conjunctions. Jupiter should have 4 [triple] conjunctions
[with Mars and the lower planets; continuing by the same method], we multiply that [4] by
[the sum of] 2 plus one-half, and the result is 10. Mars has 3 conjunctions; we multiply
them by 2, and the result is 6. The Sun has 2 conjunctions; we multiply them by the sum
of 1 plus one-half, and the result is three. Venus has one conjunction with the planets
beneath it. So the total is 35, and this is the number of triple conjunctions.20

17Abu Ma↪ashar (787–886) is the most prominent astrologer of the Middle Ages. He formulated the standard
expression of Arabic astrology in its various branches, creating a synthesis of the Indian, Persian, Greek, and
Harranian theories current in his days. Despite the critique presented here, he is also Ibn Ezra’s most important
Arabic astrological source.

18The conjunctions (Mah. barot) are astronomical events where several planets appear close together in the sky.
These events are thought to have substantial astrological impact.

19The seven planets, in order from the lowest to the highest, are the moon, Mercury, Venus, the sun, Mars, Jupiter,
and Saturn.

20In anachronistic terms, Ibn Ezra is calculating that C7,3 = C6,2 + C5,2 + C4,2 + C3,2 + C2,2, where each Ck,2
is shown to be the sum of integers up to k − 1.
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We wish to find out the quadruple conjunctions. We begin with Saturn and Jupiter, and
Mars with it. For [these] three [planets] to conjoin [with one of the four lower planets],
we start with 4 conjunctions. We multiply them by 2 and one-half and the result is 10,
[namely, ten quaternary conjunctions that begin with Saturn and Jupiter]. Then come the
[quadruple] conjunctions of Saturn and Jupiter [should be Mars] with the others [lower
planets], and we start with 3 [conjunctions]. We multiply that by 2 and the result is
6 [quadruple conjunctions beginning with Saturn and Mars, skipping Jupiter], and [the
partial sum] is sixteen. Then we have Saturn with Mars [should be the sun], and there
are 2 [quadruple conjunctions]. We multiply them by 1 and one-half and the result is 3.
Then comes another conjunction [Saturn, Venus, Mercury and the moon], and [the total]
for Saturn is 20 [quadruple] conjunctions. Now we have Jupiter with 3 [conjunctions].
We multiply that by 2 and the result is 6. Then come two [conjunctions]. We multiply
that by 1 and one-half and the result is 3. Then comes one conjunction. [The total of]
Jupiter’s [quadruple] conjunctions is 10. Then we have Mars with two [conjunctions]. We
multiply that by 1 and one-half and the result is 3. Then comes one conjunction, making 4
[quadruple] conjunctions [beginning with Mars]. The Sun has one [quadruple] conjunction
with the planets beneath it. So the sum total is 35 quadruple conjunctions.21

We wish to find the quintuple conjunctions. We find 15 for [those beginning with] Saturn,
5 for Jupiter, and 1 for Mars. So there are 21 quintuple conjunctions. As for sextuple
conjunctions, there are 6 for Saturn and 1 for Jupiter, making a total of 7. There is one
septuple conjunction. So we have obtained 120 conjunctions. All these conjunctions are
odd numbers that are divisible by seven [except the last].

3. LEVI BEN GERSHON, MA↩ASE H. OSHEV

Unlike Ibn Ezra’s, Levi’s combinatorics from Ma↩ase H. oshev (see section I-6) are
abstracted from any practical context and include accurate proofs. In part I, Levi proves some
of his results on permutations and combinations by using a form of mathematical induction;
he presents the inductive step before stating the theorem and writing the initial step.22 Then,
in part II, Levi uses the theoretical results to do calculations.

In what follows, we use the modern words “permutations” and “combinations” for Levi’s
verbose formulations. Instead of “arrangements of a certain number of distinct terms from
another (larger) number of distinct terms that are exchanged either by order or by terms,” we
write “permutations of n elements out of a set of m elements” or Pm,n. Instead of “arrangements
of a certain number of distinct terms from another (larger) number of distinct terms that are
exchanged by terms,” we write “combinations of n elements out of a set of m elements” or
Cm,n. And instead of “arrangements of a certain number of distinct terms that are exchanged
only by order,” we write “permutations of n elements” or Pn.

From part I
63. If the number of permutations of a given number of different elements is equal to a

given number, then the number of permutations of a set of different elements containing

21In this paragraph, Ibn Ezra calculates quadruple conjunctions according to the anachronistic formula C7,4 =
C6,3 + C5,3 + C4,3 + C3,3, and then uses the above procedure to calculate Ck,3.

22See [Rabinovitch, 1970] for further discussion of mathematical induction in Levi’s work.
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one more element equals the product of the former number of permutations with the
number after the given number.23

Let the terms be A, B, C, D, E and their number be G. Let the number following G be
H, and let the number of ways to arrange the terms A, B, C, D, E be I. And let the terms A,
B, C, D, E, F add one term to the terms A, B, C, D, E, and thus their number is H. We say
that the number of permutations of the terms A, B, C, D, E, F is the product of I with H.

The proof is that if you place F first followed by each of the permutations of A, B, C, D,
E, the [new] permutations will remain distinct, and therefore the number of permutations
where F is the first term equals I. Similarly, since the number of permutations of A, B, C, D,
E equals I, therefore the number of permutations of A, B, C, D, F is also I. And when you
place E first followed by all these permutations, you are left with distinct permutations, and
thus the number of permutations where E is first equals I. And in this way it is explained
that when each one of the terms is placed first, the number of permutations is I. If so, then
the total of these permutations is I multiplied by the number of terms. However, there are
H terms. Therefore, the number of permutations of A, B, C, D, E, F is the product of H
with I.

It is clear that among all those permutations counted, there are no two identical ones,
because when a certain element is first, there are no identical permutations because the
permutations before attaching it were distinct and they remain distinct when it is attached
to them. And there is no doubt about that when the first elements are different. This being
the case, it is clear that among those permutations that we have counted, there are no
two identical ones.

We also say that there are no permutations besides those. For if there were, let
DFECAB be such a permutation. But in this case Dwould have been added to the
remaining elements FECAB, so DFECAB is one of the permutations we have counted.
And since there are no two identical permutations and there are no permutations except
those, it follows that the number of permutations of A, B, C, D, E, F is the product of H
with I, which is what we wanted to prove.

And thus, it can be understood that the number of permutations of a given number of
terms is the number built from consecutive numbers starting with one and their number is
the number of these terms.24 The number of permutations of 2 is 2, and that is built from
the numbers 1 and 2. And the number of permutations of 3 is the product of 3 with 2, and
this equals the number built from 1, 2, 3. And similarly, this can be shown without limit.

64. The number of permutations of two terms from a given number of distinct terms is
equal to the product of the given number and the number that precedes it.25

65. When you are given a number of terms and the number of permutations of a second
given number from these terms is a third given number, then the number of permutations
of the number following the second given number from these terms is the product of the
given third number by the excess of the first given number over the second number.26

23Pn+1 = (n + 1) Pn. The proof ends with an inductive style point about n!.
24Pn = n!.
25 Pn,2 = n (n − 1).
26PH,I+1 = PH,I (H − I), where, in Levi’s lettering, L = PH,I .
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Let the terms be A, B, C, D, E, F, G, and let their number be H. Let I be different from
H and less than H. Let the number of permutations of I elements from these elements be
equal to L; let M be the number following I. Let the difference between H and I be N. I say
that the number of permutations of M elements from these terms is equal to the product
ofL and N. Let one of the permutations of Ielements be ABC; then the remaining elements
are D, E, F, G and their number is equal to N. Putting each one of the elements D, E,
F, G together with the permutation ABC, distinct permutations result and the number of
elements in such a permutation is M, because one more element has been added. Since
the number of D, E, F, G is N, the new permutations stemming from ABC will number N,
and it is clear that the number of new permutations stemming from each permutation of
I elements, distinct in their order or in their elements, is N. So the total number of these
permutations of M elements is the number N multiplied by the number of permutations of
I of these elements. But the number of permutations of I of these elements is L; thus the
number of permutations of M of these elements is the product of N by L.

We say that among all these permutations that we have counted, no two are identical
permutations. Indeed, to one permutation, distinct elements have been joined, from one
time to the next, and from this it follows that these permutations are distinct, and there is
no doubt that distinct permutations will not become identical when any element is joined
to them. Thus there are no two identical permutations.

We say that there are no permutations besides those that we have counted. For if it
were possible, let one such permutation be FDBG. However, the permutation DBG has
been joined with each one of the remaining elements at the first place, and one of these
elements is F. Thus the permutation FDBG is one of the permutations that we counted.
There being no two identical permutations among those that we counted and there being
no permutations besides these, the number of permutations of M of these elements is the
product of N by L, which we wanted to prove.

And so it is clear that the permutations of a given number from a second given number
of terms is equal to the number built from consecutive numbers. Their number is equal
to the first given number, and the last one is the second given number. Let the number of
terms be 7, and the consecutive numbers starting from 1 are 1, 2, 3, 4, 5, 6, 7. It is clear
that the number of arrangements of two of these is the product of 6 with 7—the number of
numbers is 2; they are consecutive, and the last of them is 7. The number of permutations
of 3 of them is equal to the product of 5 with the product of 6 and 7, because the excess
of 7 over 2 is 5. This equals the product built from 5, 6, 7. Also, these numbers are three
numbers; they are consecutive, and the last of them is 7. Similarly, it can be explained
with any number you like.27

66. When there is a given number of terms, and the number of combinations of a
second given number from these terms is a third given number, and the number of
permutations of as many terms as this second given number is a fourth given number,
then the number of permutations of the second given number from as many terms as the
first given number is equal to the product of the third given number by the fourth given
number.28

27In modern notation, Levi has proved that Pm,n = (m − n + 1) . . . (m − 2) (m − 1) m.
28Using Levi’s lettering, this result, in modern notation, is PG,H = PHCG,H .
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Let the elements be A, B, C, D, E, F and let their number be G. Let the number of
combinations of H elements out of G be J and the number of permutations of H elements
be L. I say that the number of permutations of H elements out of G elements is equal to
the product of Jand L. Let one of the ordered sets from the combinations of H elements
be BCD; then all the permutations of this set produceL ordered sets. In the same way, one
shows that for each of the ordered sets from combinations of H terms out of all the terms
one can form L ordered sets. So out of the total of all these sets, one obtains ordered sets
by multiplying the number by L. Since the number of these sets is J, the number of the
ordered sets is the product of J and L.

We claim now that among all the chosen ordered sets, no two are the same. For where
the elements are different, they are permuted, and the number of permutations is L, as we
had assumed. Without a doubt, moreover, two ordered sets containing different elements
cannot become equal through permutations.

We claim further, that there are no other ordered sets besides the ones we have
already counted. For suppose this were possible, say, by the ordered set FDB. But all
the elements BDF are already permuted and one of the permutations is FDB. But FDB is
one of the ones already counted, so there is no further ordered set available. So since,
among the counted ordered sets no two are equal and no further ones are available,
therefore the number of permutations of H elements out of the elements A, B, C, D, E,
F is equal to the product of J and L.

67. When there is a given number of distinct terms, and the number of permutations
of a second given number from these terms is a third given number, and the number of
permutations of the second given number of terms is a fourth given number, then the
number of combinations of the second given number from the given number of terms
equals the number of units by which the fourth number counts the third number.29

68. When there is a given number of distinct terms, and the number of combinations
of a second given number from these terms is a third given number, and the excess of
the first given number over the second given number is a fourth given number, then the
number of combinations of the fourth given number from those terms is equal to the third
given number.30

From chapter 4 of part II
If you wish to find the number of permutations of a second given number of elements
out of a first given number of distinct elements, you should know that the number of
permutations of two elements is equal to the product of the first given number and the
previous number and that the number of permutations of three elements has a ratio to
that of two elements as the ratio of the difference between the first number and 2 to 1.
Furthermore, the number of permutations of four elements has a ratio to that of three
elements as the ratio of the difference of the first number and 3 to 1, and so on without
end.

Therefore, you proceed as follows: Form the number from the product of as many
numbers following each other as the second given number, with the last being equal to

29Cm,n = Pm,n/Pn.
30Cm,m−n = Cm,n.
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the first given number. The result is what one desires. As an example, you want to know
the number of permutations of five elements out of eight. Since the second given number
is 5, take the product of five consecutive numbers so that the last one is 8, that is, the
product of 4, 5, 6, 7, 8. This product is 6720, which is the number of permutations of five
elements out of eight. This is so, because the number of permutations of two elements is
the product of 7 and 8 and of three elements is the product of 6 by the product of 7 and 8,
as was previously shown, and the number of permutations of four elements is the product
of 5 by the product of 6, 7, and 8 and of five elements is the product of 4 by the product of
5, 6, 7, and 8, and so forth. This is clear from the above.

If you wish to find the number of combinations of a second given number of elements
out of a first given number of different elements, find the number of permutations of the
second given number out of the first given number of different elements and note that.
Then find the number of permutations of the second number. As many times as that
number divides the number first found is what you are seeking. As an example, suppose
you want to know the number of combinations of five elements out of eight. Find how often
the product of 1, 2, 3, 4, 5 divides the product of 4, 5, 6, 7, 8. The product of 4, 5, 6, 7, 8
is 6720 and the product of 1, 2, 3, 4, 5 is 120. Now 6720 contains 120 56 times, so 56 is
the desired result. . . .

To make things easy for you, you should also know that the number of combinations
of five elements out of eight elements is equal to the number of combinations of three
elements out of these elements. In fact, this number is the number of times the product
of 6, 7, 8, that is, 336, contains the product of 1, 2, 3, that is, 6. This result is 56, so the
number of combinations of three elements out of eight elements is the same as that of
five elements. The reason for this was presented earlier.

4. LEVI BEN GERSHON, ON HARMONIC NUMBERS

According to Levi ben Gershon himself, On Harmonic Numbers was commissioned by
Phillipe de Vitry, a French composer and music theorist and also an official at the court of
Philip VI, to answer a question about numbers formed by powers of 2 and 3. This question
was perhaps related to the question of possible ratios giving harmonic tones. Recall that the
ratio 2:1 gives an octave, 3:2 a fifth, 4:3 a fourth, and the difference between a fifth and a
fourth (the quotient of the ratios) gives 9:8, a single tone. All these ratios are of the form
(n + 1) : n, so the question was asked whether there are any other ratios of that form that can
come from the basic ratios by composition. Levi’s negative answer is based on an ingenious
parity analysis of the various numbers involved.

Although Levi wrote the work in Hebrew, it was immediately translated into Latin (perhaps
by Petrus of Alexandria), and the Hebrew version has been lost.

In the year 1342 of the incarnation of Christ, our work on mathematics having been
completed, I was requested by the noted master of the science of music, Master Philippe
de Vitry of the French kingdom, to demonstrate a certain hypothesis postulated in that
science: all pairs of harmonic numbers differ by a number, except for 1 and 2, 2 and 3, 3
and 4, [and] 8 and 9.31

31Note that 1 is not considered to be a number; 2 is the smallest number.
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A harmonic number is described as follows: A number is harmonic if, except for the
unit, it is divisible only by 2 or 3, and the factors also are similarly divisible down to unity.
Some examples are 1, 2, 4, 8, . . . and 1, 3, 9, 27, . . . , and also 6, 12, 18, 24, . . .. And I
wish to satisfy him and demonstrate this principle in this place in our book. But since all
such harmonic numbers are either, first, in continuous proportion with ratio 2, or secondly,
in continuous proportion with ratio 3, or thirdly, of the type produced by multiplying a
number of the first type by a number of the second, I will demonstrate the theorem on
these proportions stated in other terms, as follows:

Of all the numbers successively proportional with ratio 2, and of all the numbers
successively proportional with ratio 3, and of their mutual products, any two of these
differ from each other by a number, except for: 1 and 2, 2 and 3, 3 and 4, and 8 and 9. If
this were not true, there would be another pair of numbers defined as above, consisting
of equal numbers or differing just by unity. But this conclusion is false. It appears thus that
the initial proposition is true. I will demonstrate in what follows the falseness of the stated
conclusion.

To facilitate the comprehension of this demonstration, I propose certain definitions.
First, the numbers of the first class will be called “numerical powers of 2”; then the
numbers of the second class will be called “numerical powers of 3.” Those of the third
class will be called “products of a numerical power of 2 by a numerical power of 3.” Also,
we will call the unit, the “element of the first rank in the first class and the second class,”
and the first number that follows, we will call the “element of the second rank,” and the
next number, the “element of the third rank,” and so forth, to infinity. Finally, the second,
fourth, sixth, eighth ranks and so on, we will call even ranks, the others, odd ranks. This
concludes the definitions.

1. Every numerical power of 2 is even, because it is the product of an even number by
the unit or by an even number, such as 2, 4, 8, 16, and so on.

2. Every numerical power of 3 is odd, because it is the product of an odd number by
the unit or by an odd number, such as 3, 9, 27.

3. Every number that is the product of a numerical power of 2 by a numerical power
of 3 is even, because it is the product of an even number by an odd number, such as 6,
12, 18.

4. Every numerical power of 2 is only divisible by another number that is a numerical
power of 2, and every number of this same class is divisible by every number of lower rank
in this same class and only gives a quotient of this same class. Similarly, every numerical
power of 3 is only divisible by a number that is also a numerical power of 3.

This is true after Euclid [IX.11]. It follows that no numerical power of 2 is divisible by an
odd number [IX.13].

5. The half of a numerical power of 3 less a unit is equal to the sum of the numerical
powers of 3 of rank strictly less including the unit.

This is true by Euclid, IX.38 [IX.35], as one can verify.
6. Every numerical power of 2 and of 3 of odd rank is a square.
This is necessarily true by Euclid [IX. 8].
7. The sum of two numerical powers of 3 is even.
Let the two given numbers be AB and BC. If we subtract the unit BD from the number

BC, there remains the number DC which is even. Since the number AD is even, it follows
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that the number AC is even, which was what we wanted to prove. And it has therefore
been established that if one adds an even number of numerical powers of three, their
sum will be an even number.

8. The sum of an odd number of numerical powers of 3 is odd.
Let the given numbers be A, B, C, D. Since the sum of A, B, C, D is even according to

[7], if we add an odd number E, the total will be an odd number, which is what we wanted
to prove.

9. The sum of a numerical power of 3 of odd rank and a number of the same class of
the immediately following rank will be a square number divisible by 4.

Let A be the number of odd rank to which one adds B, the number of the following
rank. Since A is a square by [6], and B is triple of A, that is, A multiplied by 3 is B, it
follows that A + B32 is four times A, which is a square number. And since 4 is also a
square by [6], it follows that the ratio of A to A + B is equal to the ratio of a square
number to a square number. But A is a square; thus A + B is a square and since A + B
is four times A, it follows that A + B is divisible by 4. Thus the sum of a numerical power
of 3 of odd rank and the number of the same class of the immediately following rank is a
square number divisible by 4.

From what precedes, it follows that if two successive numerical powers of 3 are added,
their sum is divisible by 4, because this sum is equal to four times the smaller of the two
numbers. And it follows that if one adds an even number of consecutive numerical powers
of 3, the sum is divisible by 4, because the sum of any two of these successive numbers
is divisible by 4, after [9], and thus their total is divisible by 4.

10. The sum of any four powers of 3 of consecutive ranks is divisible by 5 and by 8;
furthermore, the sum of these same consecutive numbers of the same class is divisible
by 4.

Let A, B, C, D be the powers of 3. As 1 is to 9, the third element of this class, so is A to
C and B to D. It follows that the ratio of 1 + 9 to 1 is the same as the ratio of A + C to A
and B + D to B. Therefore, A + C is ten times A and B + D is ten times B. It follows that
A + B + C + D is ten times A + B. But by [9], A + B is four times A [and C + D is four
times C]. Thus A + B + C + D is four times A + C and therefore forty times A. But 40 is
divisible by 5 and 8, and so A + B + C + D is divisible by 5 and 8, and it is at the same
time the sum of four consecutive powers of 3. And the sum of these same consecutive
elements of this class, as we know, is divisible by 4, which is what we wanted to prove.

11. The fourth part of a number divisible by 8 is even.
Since, in fact, it is divisible by 8, it has an eighth part, which part, doubled, is the quarter.

But this doubled number may be divided into two equal parts, and such a number is even.
It follows that the fourth part of the given number is even, which is what we wanted to
prove.

12. No even number is equal to an odd number or to the unit, because it differs by at
least a unit from any of these.

13. No even number is equal to another even number, because it differs from any other
by at least two.

32In the Latin manuscript, the sum of two or more quantities is indicated by placing the letters next to one another,
separated by a dot. To make the reading easier, we have used the plus sign in what follows.
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14. No odd number is equal to another odd number or to the unit, because it differs
from any other by at least two.

These things being demonstrated, I will prove that the negation of the stated
consequence is true, and therefore, first, that no two numbers of the defined classes
are equal.

In propositions 15 through 20, Levi shows that no two numbers of the same class are equal,
that a numerical power of 2 cannot equal a numerical power of 3, nor can a numerical power
of 2 or 3 equal a number that is a product of two such numbers.

This decomposition and this mutual comparison of the numbers in question show that
the negation of the first conclusion is true, namely that no two harmonic numbers are
equal, and that is what we wanted to prove.

It remains to prove the negation of the second conclusion, namely, that no two numbers
of the given classes differ by just a unit, with the exception of those that have been
indicated above.

In propositions 21 and 22, Levi shows that no power of 2 (except for 1 and 2) can differ by
a unit from another such power, that no power of 3 can differ by a unit from another power of
3, and that no product of a power of 2 by a power of 3 can differ by only a unit from another
such product, because the parity of all numbers in each class is the same, so any two must
differ by at least two.

23. No numerical power of 2 can differ by only a unit from a product of a numerical
power of 2 by a numerical power of 3.

Let A be a numerical power of 2 and B the product of a numerical power of 2 by a
numerical power of 3. So B is the product of D, a numerical power of 2 and E, a numerical
power of 3. If D is greater than or equal to A, then the proposition is true. So suppose
that the number A is greater than the number D. It is necessary by [4] that the quotient
of A by D is a numerical power of 2. Let us denote that quotient by F. So D times E is
B, and D times F is A. But F cannot be equal to E, because they differ by at least a unit
according to [12], since one is even and the other is odd. It follows that the number B,
which is the product of D and E, is not equal to the number A, which is the product of D
and F. Even more, these differ by a number equal to the product of D by the difference
between E and F. The resulting number is not less than the number D because the said
difference is not less than 1. But the number D is at least equal to 2, since it belongs
to the class of powers of 2. Thus the number obtained is at least equal to 2, so the
number A differs from the number B by more than a unit, which is what we wanted to
prove.

24. No numerical power of 3 can differ by only a unit from a number that is the product
of a numerical power of 2 and a numerical power of 3.

The proof is similar to the proof of proposition 23 and is omitted.
25. With the exception of the second term of the class of powers of 2 and the second

term of the class of powers of 3, the second term of the class of powers of 3 and the
third of the class of powers of 2, and the third of the class of powers of 3 and the fourth
of the class of powers of 2, no other numerical power of 2 differs by only a unit from any
numerical power of 3.

If this were not true, then either there would be a particular numerical power of 3 that is
greater by the unit than a particular numerical power of 2, and therefore when the unit is
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subtracted from this numerical power of 3 the remainder is equal to the numerical power
of 2, but this is false. Or there would be a particular numerical power of 2 that is greater
by the unit than a particular numerical power of 3, and therefore when the unit is added to
the numerical power of 3, the sum is equal to the numerical power of 2, and this is false.
The truth of these negations of the stated propositions will be demonstrated in a clear and
evident fashion by the theorems that follow, the first of which is the following.

26. If the unit is subtracted from any numerical power of 3 of even rank, the remainder
is not a numerical power of 2.

Let AB be such a numerical power of 3, an odd number by [2], from which one subtracts
the unit DB. There remains the even number AD. If this is divided in half at the point C,
then, by [5], the number AC is equal to the sum of all the terms of the class of powers of 3
preceding AB. This sum is odd, by [8], because the number of terms preceding AB is odd.
It follows that the number AD is divisible by an odd number. It follows by [4] that AD is not
a numerical power of 2, and that is what we wanted to prove. We are supposing here that
AC is not the unit, which will be the case if AB is the second term of the class of powers
of 3. But this is excluded by the hypothesis, for then AD will necessarily be a numerical
power of 2, since AC will in fact be nothing else than the unit, which thus divides every
number and whose double is the second term of the class of powers of 2.

27. If the unit is subtracted from any numerical power of 3 of any odd rank immediately
following 4 or any multiple of 4, such as the ranks 5, 9, 13, 17, and so on, the remainder
is not a numerical power of 2.

Let AB be such a numerical power of 3, which is odd by [2], from which the unit DB
is subtracted. There remains the even number AD. If this is divided in half at the point C,
it follows by [5] that AC is equal to the sum of all the terms of the class of powers of 3
preceding AB, and this sum is also equal to the number CD. It follows by [10] that this
sum is divisible by 5, since the number of terms preceding AB is 4 or a multiple of 4. It
follows that AD is divisible by 5, and the same for CD. Thus AD is not a numerical power
of 2, and that is what we wanted to prove.

28. If the unit is subtracted from any numerical power of 3 of any odd rank that does
not follow immediately 4 or any multiple of 4, such as the ranks 7, 11, 15, and so on, the
only numbers of the class of powers of 3 of which we now need to speak, the remainder
is not a numerical power of 2.

Let AB be such a numerical power of 3, an odd number by [2], from which the unit DB
is subtracted, leaving the remainder AD, an even number. This number is divided in half
at the point C, giving the number AC, which is equal to the sum of all the terms of the
class of powers of 3 preceding AB by [5]. From the number AC is subtracted the number
EC equal to the sum of the first two terms, whose sum is 4. There remains the number
AE, equal to the sum of all the terms preceding AB, the first and second excluded. The
number of other terms is 4 or a multiple of 4. It follows that the number AE is divisible by
8, since by [10] such a sum is divisible by 8. Let the number FG be the fourth part of the
number AE. To FG is added the unit GH, which is a quarter of the number EC. It follows
that the number FH is odd and is the fourth part of the number AC and also the fourth part
of the number CD. It follows that the number AD is divisible by the number FH, which is
odd, and therefore by [4] the number AD is not a power of 2, and that is what we wanted
to prove. Therefore we have demonstrated the truth of the negation of the first proposition,
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and we know that if a unit is subtracted from any numerical power of 3, except those of
the third or the second rank, the remainder is not a numerical power of 2.

It remains to demonstrate now the truth of the negation of the second proposition, to
show that if a unit is added to any numerical power of 3, with the first term, the unit, and
the second term excepted, the sum is not a numerical power of 2.

29. If the unit is added to any numerical power of 3 of odd rank, with the exception of
the first, which is the unit, the sum is not a numerical power of 2.

Let AB be any numerical power of 3, of odd rank, to which is added the unit BD. From
the same number is also subtracted the unit CB. There remains the even number AC,
which is divided into two equal parts at the point E. This produces the number AE, equal
to the sum of all the numerical powers of 3 preceding AB, by [5]. This sum is even by
[5], since the number of terms preceding AB is even. To the number AE, which is even,
is added the unit. The result is the odd number EB. But it is known that this result is half
of the number AD, because the number AE is half of the number AC and the unit CB is
half of the number CD. It follows that the number AD is divisible by an odd number, and
therefore by [4], the number AD in question is not a numerical power of 2, and that is what
we wished to prove.

30. If the unit is added to any numerical power of three of even rank, with the exception
of the second rank, the sum is not a numerical power of 2.

Let AB be any numerical power of 3 of even rank, which is odd by [2], to which is added
the unit BD. Let the number CE be the last of all the numbers of any rank preceding AB.
It follows that the number AB is triple the number CE. From CE is subtracted the unit FE
and let the number AB be decomposed as the sum of AG, GH, HI, such that each of these
is equal to the number CF, and also the remainder IB, which is triple the number FE, the
unit. It follows that IB is 3 and therefore ID is 4. Let the number CF, which is even, be
divided into two equal parts at the point L. It follows, by [5], that the number CL is equal to
the sum of all the numerical powers of 3 preceding the number CE, and by [7], this sum
is even. It follows by [9] that the number CL is divisible by 4. It follows that the number
CF is divisible by 8, because the ratio of CL to 4 is the same as the ratio of CF to 8. And
since the number AI is divisible by CF, and the number CF is divisible by 8, therefore AI is
divisible by 8. Therefore, by [11], the fourth part of the number AI is even. Let this fourth
part be denoted by the even number MN. To this is added the unit NO, which is the fourth
part of the number ID. It follows that the number MO is odd, and is the fourth part of the
number AD. It follows that the number AD is divisible by the odd number MO. It follows by
[4] that the number AD is not a numerical power of 2, and that is what we wanted to prove.

It appears therefore, in terms of this division of numbers into these three classes and
their mutual comparison, that, with the exception of the cases noted above, two arbitrary
numbers contained in the classes in question are neither equal to each other nor differ
by only a unit. Consequently, any two of these numbers, whatever they are, differ by a
number, and that is the principal object of our demonstration.

Thus concludes the treatise of Master Levi ben Gershon on the subject of harmonic
numbers.

The next three sections contain ideas on amicable numbers (pairs of integers where the sum
of divisors of one equals the other, and vice versa). There are a few discussions of amicable
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numbers in Hebrew medieval arithmetic. These discussions are undoubtedly based on Thābit
ibn Qurra’s theorem and proof of the primary calculation procedure enabling one to obtain as
many pairs of amicable numbers as one wishes [Berggren, 2005, pp. 560–563]. In an elaborate
study, [Lévy, 1996] outlines the references to Thābit’s results in Hebrew medieval literature
and how the Hebrew adaptations of his theorem circulated in Spain, Provence, and Italy in the
fourteenth and fifteenth centuries.

5. QALONYMOS BEN QALONYMOS, SEFER MELAKHIM (BOOK OF KINGS)

This section was prepared by Naomi Aradi
Qalonymos ben Qalonymos ben Me’ir of Arles (1287–ca. 1329), holder of the title Nasi

and known in Latin as Maestro Calo, was a prolific translator and an original scholar. His
surviving original treatises criticize the ethics of his contemporaries, and his translations cover
a wide variety of Arab scholarship. He traveled in the Catalan-Provençal area and worked for
a time in Rome at the service of Robert d’Anjou, but even though he was a contemporary of
Levi ben Gershon, we have no evidence that they ever met.

The earliest Hebrew treatment of amicable numbers is apparently a passage in a treatise that
was identified by [Steinschneider, 1870] as the Book of Kings by Qalonymos ben Qalonymos.
This composition, currently available in two manuscripts, is a compendium consisting of two
sections. The first section is an arithmological summary that enumerates universal properties
of the first ten numbers and numerical groupings of beings. In the second section specific
properties of the numbers are listed, which are reflected in arithmetical statements and
algebraic identities in Euclidean style. The discourse on amicable numbers is a part of a cluster
of propositions in the second section, which, according to Lévy, corresponds to excerpts in
the booklet of Thābit. In this passage the steps of the algorithm for finding pairs of amicable
numbers are outlined briefly.

When we want to find amicable33 numbers, as many as we wish, we set the numbers
proceeding from one in a double proportion, including one. The numbers preceding the
last number are summed up, including one [1 + 2 + ... + 2n−1]. Then the penultimate
number [2n−1] is added to the sum, and the number preceding the penultimate number
[2n−2] is subtracted from the sum. The [two] numbers produced by the addition and
subtraction [which equal 2n − 1 + 2n−1 and 2n − 1 − 2n−2] are primes, and neither equals
two; if they are not, you proceed until prime numbers come out. Multiply the product of
one by the other and by the penultimate number [

(
2n − 1 + 2n−1

) (
2n − 1 − 2n−2

)
2n−1],

and save the result.
Add to the last number [2n] the fourth number away [in the list of powers of two, namely,

2n−3] (or one, if 1 is the fourth), and multiply the sum by the last number. Subtract [1]
from the product, so that the remainder is prime. Multiply this prime by the penultimate
number [2n−1, yielding

(
2n

(
2n + 2n−3

) − 1
)

2n−1]. The result of multiplication and the
saved number each equal the sum of the parts of the other. The numbers produced in
this way are called amicable.

33Ne’ehavim. Literally, “mutually beloved.”
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6. DON BENVENISTE BEN LAVI, ENCYCLOPEDIA

This section was prepared by Naomi Aradi
Another account of Thābit’s theorem is found in a text that is said to be a Hebrew

translation from the Arabic of the arithmetical part of an encyclopedia attributed to Abū
al-S. alt (ca. 1068–1134) prepared by Don Benveniste ben Lavi in Saragoza in 1395. Yet
[Lévy, 1996] argues that the main part of the Hebrew text (excluding the opening and ending)
is in fact a translation from the Arabic of the arithmetical part of Ibn Sı̄nā’s (Avicenna’s)
encyclopedia al-Šifā. The arithmetic section of the treatise covers virtually the same issues
as those discussed in the Arithmetic of Nicomachus—types of numbers, ratios, proportions,
progressions, and the like. The passage on amicable numbers appears as part of the discourse
concerning the even-times-even numbers. First, the definition of the relationship between a
pair of amicable numbers is illustrated by the example of the numbers 220 and 284. Then
a short rendering of Thābit’s general algorithm for finding pairs of amicable numbers is
given.

The way of generating [amicable numbers] is by adding the even-times-even numbers
together with one [1 + 2 + · · · + 2n−1]. If the sum is prime, and on condition that when
the last of them [2n−1] is added, or the one before [2n−2] subtracted, the result after
the addition and after the subtraction is prime, then multiplying the result after the
addition by the result after the subtraction and then multiplying the product by the
last number added [2n−1] is a number that is amicable to another [this number being(
2n − 1 + 2n−1

) (
2n − 1 − 2n−2

)
2n−1].

The number that is amicable to it is the number coming from adding the product
of the sum of the above mentioned added and subtracted [numbers 2n − 1 + 2n−1

and 2n − 1 − 2n−2] by the last number added [2n−1] to the first number that is amica-
ble [

((
2n − 1 + 2n−1

) + (
2n − 1 − 2n−2

))
2n−1 + (

2n − 1 + 2n−1
) (

2n − 1 − 2n−2
)

2n−1].
These are amicable numbers.

In the margins of the text in [Oxford, Bodleian MS Heb. d. 3/4], a verbose illustration of
the general algorithm is given by its application for finding the pair 220 and 284.

A slightly more verbose version of the same procedure appears on another page of the same
codex [f. 45r] by the same hand with the following columns of numbers with a derivation
of the pair 220 and 284 (compare with Aaron ben Isaac’s version below). In anachronistic
notation, an = 2n, bn = 2n+1 − 1, cn = bn + an.

cn an bn

1
5 2 3
11 4 7
23 8 15
47 16 13

In the margins of this page, the pair 17,296 and 18,416 is calculated briefly in a different
hand as follows: 23 × 47 = 1081; ×16 = 17296 and 16 × 70 = 1120; +17296 = 18416.
This applies the algorithm above for n = 5.
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7. AARON BEN ISAAC, ARITHMETIC

This section was prepared by Naomi Aradi
Lévy lists a few additional cases in which a very similar short formulation of Thābit’s

general algorithm is inserted in other Hebrew manuscripts. We complement Lévy’s survey
with the arithmetic of Aaron ben Isaac (see section I-2)—an elaborate procedure for finding
pairs of amicable numbers.

The deliberation on amicable numbers is included in Aaron’s discussion of the types
of numbers. Unlike both examples above, Aaron describes the stages of the procedure in
a practical manner, assisted by a written calculation table. The practical instructions are
demonstrated by detailed examples in which two pairs of amicable numbers are calculated
(220 and 284; 17,296 and 18,416). However, using his own guidelines Aaron found another
pair of numbers (2024 and 2296) that are not amicable, a fact that he apparently failed to
notice. Although Aaron must have drawn the basic algorithm from external sources, perhaps
this error could testify to his attempt to implement the algorithm by self-instruction.

[The amicable numbers] are any two numbers, such that the [sum of the] whole parts
of each equal the other. You find the first [of each pair] in one manner, and the partners
in another. The foundation of both is the doubled numbers called even-times-even, from
which we produce primes, and from the primes the amicable numbers.

We first order the doubled numbers, which are even-times-even, starting from one as
far as you wish. Then take [the sum of the first two doubles] 1 and 2, which are 3, [and
set it] against 2. Take [the sum of the] three doubles from 1 to 4, which are 7, [and set
it] against the last double you took, which is 4. Take [the sum of the] 4 doubles from 1
to 8, which are 15, and set it against the last double, which is 8. Take [the sum of the] 5
doubles from 1 to 16, which are 31, [and set it] against 16. [Set] also 63 against 32, 127
against 64, [and 255 against 128.]

A corrupt passage follows, indicating that the third column is the difference between the
number in the second column and the number above the corresponding number in the first
column. The first column in the diagram below is a reconstruction. In anachronistic terms,
an = 2n, bn = 2n+1 − 1, cn = bn − an−1.

an bn cn

2 3 2
4 7 5
8 15 11
16 31 23
32 63 47
64 127 95
128 255 191

From the primes in the third column [cn] we get the first of
each pair of amicable numbers.

The text also notes that 95 will not produce amicable numbers,
because it is not prime. The follo- wing passage is not quite clear.
It instructs the reader to take pairs of successive primes from
the third column, but it does not indicate that they are to be mul-
tiplied by each other and by the corresponding number in the
first column. The examples below, however, fill the gap. The for-
mula is cn+1 × cn × an.

The second [of each pair of amicable numbers] is produced differently. Take the double
which follows the double from which you produced the first amicable number [a3], and
add one, which is the first in actu of even-times-evens [a0]; to the second doubled number
of the seconds [a4] add 2 [a1]; to the third [a5], add 4 [a2], and so on. Then multiply
[an+1 by an+1 + an−2], and subtract one from the result. You get a prime. Multiply it by
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the doubled number preceding it in nature [an], and the result is the partner [yielding
(an+1 (an+1 + an−2) − 1) an].

I hereby give six examples, three for the first amicable numbers, and three for their
partners.

In a corrupt passage, Aaron indicates that the partner of an amicable number can also be
derived by summing the parts of the amicable number.

First example: If we want to find the first amicable number of the first pair, we take what
remains from 7 and 15 as you see in the third column [of the table], which are the prime
numbers 5 and 11 [c2 and c3, respectively]. We multiply them by each other, yielding 55.
We then multiply 55 by the double number 4 [a2], yielding 220. This is the first amicable
number of the first pair.

By summing the parts of 220, Aaron finds its partner, 284. The next examples for
the first numbers of amicable pairs according to this method are c4 × c3 × a3 = 2024 and
c5 × c4 × a4 = 17296. Aaron fails to note that the first of these does not work, because the
construction of the partner involves a non-prime.

We wish to find the partner of the first amicable number we have. Here is how. Take
the double number 8 [a3], and multiply it by itself with 1 added, which is 9, yielding 72.
Subtract 1 from 72, there remain 71, which is prime. Multiply it by the doubled number
naturally preceding it, which is 4 [a2], yielding 284. This is the partner of the first amicable
number.

Aaron lists the parts of 284 and then produces the next two partners:
(a4 (a4 + a1) − 1) a3 = 2296 (which fails because the first factor, 287, is not prime)
and (a5 (a5 + a2) − 1) a4 = 18416.

III. MEASUREMENT AND PRACTICAL GEOMETRY

This section opens with two important treatises that summarize geometric knowledge in
a semi-practical style. This does not mean that the authors or readers were ignorant
of higher geometry, but that the treatises focused on unmotivated rules or on forms of
reasoning somewhat more intuitive than the highbrow Euclidean style. The Book of Measure
does not provide reasoning at all, but the problems solved are clearly not all practical
(one is not likely to know the area of a rectangle and the sum of its side and diagonal
without knowing its sides in a practical context). Bar H. iyya’s The Treatise on Measuring
Areas and Volumes does provide solid proofs, but it simplifies the Euclidean presentation
considerably.

We continue with two discussions of measurement in religious context, which show the
relevance of practical geometric reasoning for religious scholars. To conclude, we quote from
Levi ben Gershon’s discussion of iterative linear interpolation and trigonometry as presented
for application in astronomy.

1. ABRAHAM IBN EZRA (?), SEFER HAMIDOT (THE BOOK OF MEASURE)

This treatise came down to us in Hebrew and in Latin translation. The only surviving
Hebrew manuscript attributes it to Ibn Ezra (see section I-1), but this attribution is not
considered certain. The treatise opens with an unsystematic collection of notes on arithmetic,
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which, according to a conjecture in [Lévy and Burnett, 2006], may have been an early draft or
collection of notes for Ibn Ezra’s The Book of Number. It then goes on to treat geometry. The
treatise devotes a chapter to measuring triangles, then one to quadrilaterals, another chapter
to circles and trigonometry, another to measuring solids, and a final chapter to the use of the
astrolabe for determining distances and heights.

The book provides hardly any proofs or arguments, but it summarizes techniques for
obtaining geometrical measurements from geometrical givens. It contains no algebraic
language and no arsenal of Euclidean building blocks to work with, but the procedures it
includes seem to depend on both. [Lévy and Burnett, 2006] conjecture that the book was to
be revised and improved, but was then abandoned when Ibn Ezra became acquainted with Bar
H. iyya’s work on geometry (see below).

Preliminary definitions (2.1–2.4)
Because all measurements depend on number, I shall indicate the principles.

The point is in the mind, not in the [drawn] figure. Between two points there is a line;
this is “length.” Between two lines there is breadth; this is “surface.” Likewise, when [one
considers] the vertical [dimension], there arises depth, and thus “body” [a solid].

Know that among measurements, there is sometimes a line, at other times a surface,
at other times a body.

I shall start now with the measurements of surfaces. Although the [basic] measurement
of the area is the square, I shall start by mentioning the triangular figures, because the
triangular figure is the principle of all [rectilinear] figures and every figure returns to it.

Triangle measurement (3.1–3.26)
The triangular figure of which the [three] angles are acute and the [three] sides equal [i.e.,
the equilateral triangle].

Subtract from the square of the side its quarter; its root is the height. The area: multiply
the height by half the side, or the side, taken as the base, by half the height. Or take of the
square of the height five of its ninths and a fifth of its ninth. Or take of the square of the
side its third and add to it its tenth.

Or add the three sides and take the half; observe by how much this half [of the
perimeter] exceeds each side, and multiply the excess by itself—this [means] taking its
square—and multiply by the first line, which is the excess of the half [of the perimeter],
and then one gets a cube; multiply this cube by half the sides [the half-perimeter]; take
the root of the product, and in this way [you have] the area.1

Problem: The area [of an equilateral triangle] is so much. How much is the side? Take
the square of the area; multiply this square by three, take the root of the product and add
to it its third; take the root of this sum, and this is the side.

Another: The area is so much. How much is the height? Take a third of the square of
the area; take its root and the root of the root, and divide the area by it; and you will find
the height.

1This is Heron’s formula applied to an equilateral triangle.
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· · ·

The triangular figure of which the angles are acute, the base different [from the two
sides], and the two sides equal [i.e., an isosceles triangle]. From the square of one side,
subtract the square of half the base; the root of the remainder is the height. The area:
multiply the height by half the base, or vice versa.

Problem: The area [of the isosceles triangle] is so much, the height is so much. How
much is the base? Divide the area by half the height.

· · ·

Another: The base is so much, the height is so much. How much is the side? Add the
square of the height to the square of half the base, and take the root of the sum.

· · ·

Another: The area is so much, the base exceeds the height by so much. How much is
the base and how much is the height? Double the area and take the square of half the
excess; add them and take the root of the sum; add to the result half the excess; you will
find the base. In the same way, subtract half the excess from the root; you will then find
the height.

The triangular figure of which the angles are acute and the sides are different [in length,
i.e., a scalene triangle].

Make the base whichever side you wish; take the squares of the other two sides;
subtract the smaller from the larger; divide half the remainder by the base; add the result
[i.e., the quotient] to half the base. You will then find the larger segment of the fall.2 If you
subtract half the result from half the base, you will then find the smaller segment of the fall.
Take the square of the larger segment of the fall; subtract from the square of the longer
side [i.e., the longer of the two sides that are not the base]; the root of the remainder is
the height [in respect to the base]. Or subtract the root of the smaller segment of the fall
from the square of the shorter side; take the root of the number [obtained]; this is [also]
the height. It is always the same. The area: by multiplying half the height by the base, or
vice versa.

The triangular figure with one right angle and two acute angles.
The area of this figure: multiply half of one short side by the other short side, the two

short [sides] being opposite the long side, which is the diagonal.
Problem: [In a right-angled triangle] one of the two sides is so much, the other so much,

these two being the short [sides]. How much is the long side? Add the squares of the two
[short sides]; the root is the long side.

Another: The area is so much, one of the short [sides] exceeds the other by so much.
How much is each side? Double the area; take the square of half the excess; take the root
of their sum; add half the excess to the root; you will have one of the [short] sides; and if

2The “segments of the fall” (mekhona) are the parts of the base as divided by the perpendicular from the opposite
vertex.
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you subtract from the root [half the excess], you will have the other [short side]. Add the
square of this to the square of that; the root of the sum will be the long side [hypotenuse].

· · ·

Square and rectangle measurements (4.1–4.25)
The quadrilateral figure of which the length is the same as the breadth and all the angles
are right angles [= the square].

Take the square of one side. This is the area.
Problem: We have multiplied the area by so much; the result divided by one side gives

so much; what is the length of each side? Divide the result by the number by which the
area had been multiplied.

Another: The diagonal is so much. How much is the side? Take the root of half the
square of the diagonal.

· · ·

Another: We have added the sides and the area; this gives so much. How much is the
side? Take the square of half the number of all the sides [= 4] and add it to the sum [of
the area plus the four sides]; subtract from the root of this result half the number of the
sides [= 2].

Another: We have subtracted the sides from the area. The remainder is so much. How
much is the side? Add the square of half [the number] of the sides to the remainder; take
its root and add to it half the number of the sides.

· · ·

The quadrilateral figure of which the length is greater than the width and the angles
are right angles [=the rectangle].

[To obtain] the area, multiply the side of the length by the side of the breadth.

· · ·

Another: The area is so much, and the longer side exceeds the shorter by so much.
How much is each of the sides? Take half the excess [of the longer side over the shorter];
then take its square; then add this to the area and take the root of the result and add to
it half the excess. The longer side is so much. If, in the same way, you subtract [half the
excess] you will find the shorter side.

Another: We have added the longer side to the diagonal; this comes to so much;
the shorter [side] comes to so much. How much is the longer side and how much the
diagonal? Take the square of the sum [of the diagonal and length]; subtract from it the
square of the known side; take half the remainder, and divide it by the initial sum; you will
find the longer side. If you subtract it [the longer side] from the sum mentioned, you will
find the diagonal.
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Or take the square of the shorter side, divide it by the initial sum [of the diagonal
and length] and add to the result [the quotient] the initial sum; half [this new sum] is the
diagonal, from which you will know the [longer] side.

Another: We have added the two sides; they come to so much; the diagonal is so much.
How much is each of the sides? Subtract from the square of the sum [of the sides] the
square of the diagonal; half of the remainder is the area.3

· · ·

Another: We have added the two sides and they exceed the diagonal by 4, and the
area is 48. How much is the diagonal and how much each side? Take the square of 4
and subtract it from twice the area; divide half the remainder by 4 and you will find the
diagonal. One will proceed in the same manner when the question is: “The area is so
much, the diagonal is so much. How much is each side?”

Another similar [problem]. We have subtracted [all] the sides from the area and the
remainder is 20, and one of the sides exceeds the other by 2. How much is each side?
Double the 2, add it to the 20; take the number of sides—which is 4—and subtract from
this the excess [of the longer side over the shorter]; the remainder is 2; take half of it, then
[take] its square, which is one; add it to 24, which makes 25, whose root is 5. Add to it half
of 2; so much is the shorter side [= 6].4

· · ·

Another: We have added [all] the sides and the area, and they come to 76, and one of
the sides exceeds the other by 2. How much is each side? Double the 2 and subtract it
from the number 76; one knows that the number of the sides is 4; add to them 2, which
is the excess of the length over the breadth; this makes 6; take the square of half this
amount; add it to 72, and take its root [= 9]; subtract from it 3, which is half 6; thus one
has the shorter side.5

· · ·

Parallelogram measurements (4.44–4.47)
The quadrilateral figure, similar to that which was mentioned above, of which the
[opposite] angles are equal, but of which two sides are equal and the other two [equal
but] different [from the first two, i.e., a parallelogram that is not a rhombus].

3The text does not contain the completion of the solution, although if one knows the sum of the sides and the
product, there is a standard method for finding the two sides.

4Although the answer is correct, the method is not at all clear. But the author appears to be reducing the problem
to one already solved, namely, determining the sides when the area and the difference of the sides are known. In
fact, the instruction to “double the 2 and add it to the 20” converts the problem to the system we would write as
x (y − 4) = 24 and x = (y − 4) + 2, for which the standard algorithm presented above applies to determine x.

5As in the previous problem, the instructions seem to convert the problem to the system x (y + 4) = 72,
(y + 4) = x + 6, to which a standard algorithm applies.
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Problem: The longer side is 9, the shorter 5; the longer diagonal is the root of 160 and
the shorter one, the root of 52. [What is the area?] Take the square of each of the two
sides that differ from each other and add them; this makes 106. Subtract this from the
square of the longer diagonal; the difference is 54. Take half of this, which is 27. Divide
this by the longer side, which gives 3. Take the square of this, which is 9, and take the
square of the shorter side, i.e., 25. Subtract the smaller from the larger. There remains 16,
of which the root is 4. If one multiplies this by 9, which is the longer side, it comes to 36.
This is the area.6

Or take the squares of the two sides and add them. They make 106. Subtract them
from the square of the longer diagonal; the remainder is 54. Take half of this, i.e., 27;
divide this by 5, i.e., the shorter side [= 5 2

5 ]; take the square of the result [= 29 4
25 ] and

also the square of 9, which we already have [the longer side], and subtract the smaller
from the larger [= 51 21

25 ]. Take the root of the remainder, i.e., 7 1
5 , and multiply this by 5,

which is the shorter side. This makes 36, which is, again, the area.

· · ·

Circles and circular arcs (5.1–5.27)
The circle.

The area of the circle. You subtract from the square of the diameter its seventh and half
of its seventh. Or multiply the square of the diameter by 11 and divide by 14. Or multiply
half the diameter by half the circumference. Or a quarter of the diameter by the whole
circumference. Or the diameter by a quarter of the circumference.

If you know the diameter, multiply by 3 1
7 . You will always find the circumference. Or

multiply the diameter by 22 and divide by 7.
If you know the circumference, multiply it by 7 and divide by 22. You will have the

diameter.

· · ·

Problem: We have subtracted the diameter from the circumference, the remainder is
so much. How much is the circumference? And how much is the diameter? Divide the
remainder by 2 1

7 and you will find the diameter. Or multiply by 22 and divide by 15 and
you will find the circumference. . . .

The arc [or the circular segment].
If one is dealing with a semicircle, its area is like that of half a circle. If it is smaller or

larger [than a semicircle], you must know the diameter of the circle from which the circular
segment has been cut, and the length of the chord of the arc and of the sagitta.7 When
you know two of these [three] elements, you can determine the third.

6To find the area of the parallelogram, one has to find the height. The procedure here and below is similar to that
of finding the height and “segment of the fall” in a scalene triangle, described above, except that in this case, the
triangle is obtuse.

7The sagitta is the segment of the diameter perpendicular to the chord lying inside the circular segment.
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Problem: The chord is 8, the diameter, 10. How much is the sagitta? Subtract from the
square of half the diameter the square of half the chord; take the root of the remainder,
and subtract it from half the diameter; you will find the sagitta [= 2].8. . .

Another: The sagitta is 2, the chord, 8. How much is the diameter? Take the square
of half the chord; divide it by the sagitta, and add the result to the sagitta; you have the
diameter [=10].9

· · ·

[Table of Sines]
The arc is 90 [degrees] and the Sine 60.10 If you take the root of half the square of 60,

you will find the Sine of the arc of 45 [degrees]. If you subtract the square of half the Sine
[of 90 degrees] from its [whole] square, and take the root of the remainder, you will have
the Sine of the arc of 60.

The Sine of one degree amounts to one unit and three minutes [1;3].
The Sine of an arc of 5 [degrees] is 5 and 14 minutes [5;14].
The Sine of an arc of 10 is also 10 and 25 minutes [10;25].
The Sine of an arc of 15 is 15 and 32 minutes [15;32].
The Sine of an arc of 20 is also 20 and 31 minutes [20;31].
The Sine of an arc of 25 is also 25 and 21 minutes [25;21].
The Sine of an arc of 30 is also 30 with no subdivisions [30;0].
The Sine of an arc of 35 is 34 and 25 minutes [34;25].
The Sine of an arc of 40 is 38 and 34 minutes [38;34].
The Sine of an arc of 45 is 42 and 25 minutes and 35 seconds and 4 thirds
[42;25,35,4].

If you double it and turn the degrees into minutes, the minutes into seconds, the
seconds into thirds and the thirds into quarters, you will then find the [square] root of
2 with great precision.11

The Sine of an arc of 50 is also 45 and 58 minutes [45;58].12

The Sine of an arc of 60 is also 51 degrees and 58 minutes [51;58].
The Sine of an arc of 65 is 54 and 23 minutes [54;23].
The Sine of an arc of 70 is 56 and 32 minutes [56;32].

8If d is the diameter, s the sagitta, and c the chord, the Pythagorean Theorem gives
(

d
2

)2 =
(

d
2 − s

)2 + ( c
2

)2,

which is the identity used here.
9Elements III. 35 states that the product of the two segments of the diameter determined by the chord is equal to

the square on half the chord. Thus, if d is the diameter, s the sagitta, and c the chord, we have s (d − s) = ( c
2

)2.
10The Sine of an arc in medieval literature is half the chord of double the angle in a circle of given radius. Thus

the Sine of a 90◦ arc is equal to the radius, which implies that for this table, the radius is 60; this value is often called
the “whole Sine.” The two calculations in this paragraph are straightforward.

11The Sine of a 45◦ arc is 60
√

2
2 . Doubling this and changing degrees to minutes, etc., will therefore give

√
2 in

sexagesimal form 1; 24, 51, 10, 8 = 1.41421356 . . . in decimal form.
12The value for 55 is missing.
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The Sine of an arc of 75 is 5513 and 58 minutes [55;58].
The Sine of an arc of 80 is 59 and 8 minutes [59;8].
The Sine of an arc of 85 is also 59 and 46 minutes [59;46].

If you take [an arc of] more than 60 [degrees], consider what is needed to complete
an arc of 90 [degrees]. Subtract the square of its Sine from the square of the whole Sine,
and take the root of the remainder. You will find what has [already] been indicated.

If you want to know the Sine of an arc that does not appear [in the table], you work
it out proportionally: look at what represents [the difference of] 5 [degrees] of arc for the
Sine, and consider the proportion that you have to add to the number you already have.14

Pyramid measurement (6.11–6.13)
A solid of which the top is square and different from the base, whose breadth is equal to
its length [a truncated right pyramid or frustum].

[The side of the square] of the top is 2, that of the base, 4, the height, 10, and it is the
height. Subtract the top from the base; observe what is the ratio between the remainder
and the top—they are equal [2]; one can, then, complete this figure to make it 10, which
is like the [original] height [to make a complete pyramid with the height 20]. The volume
[of the pyramid thus obtained] in completing the height [of the truncated pyramid] will
be 106 2

3 [= 1
3 × 16 × 20]. Let us then make the top the base [of a small pyramid]. The

volume of this complement will be 13 1
3 [= 1

3 × 4 × 10], which one subtracts from that
which has been given above. The remainder is 93 1

3 . Or let us add the square of the top
to the square of the base; let us multiply the side of the base by the side of the top; let us
add this result to the squares indicated; and let us multiply the sum of them all by a third
of the height; one finds the volume.15

Measurements of heights and distances using an astrolabe quadrant (7.1–7.13)
To measure the height of hill, a tree or a tower.16

Set the alidade [lit: “line”] of the astrolabe [lit: “instrument of brass”] [in the quadrant]
on which you have graduated the degrees of the sun17 at 45 degrees [Fig. III-1-1]. Go
forwards or backwards until you can see the top [of the object to be measured] in the
alignment of the two holes of the alidade. Then measure the distance which separates
your feet from the foot of the tree, the hill or the tower. Add to it the height between your
eyes and the ground. You obtain the measurement that you were looking for [Fig. III-1-2].
You will measure it in cubits, palms, or any other unit of measure.

Or when you have seen the top [of the object to be measured], turn and, without moving
from the place where you are, set the alidade on 45 degrees in the lower quadrant, . . .

13This should read 57.
14The procedure suggested here seems to be linear interpolation.
15This procedure is in the Moscow Mathematical Papyrus (see [Imhausen, 2007, p. 33]).
16The descriptions that follow are the standard ways used in the Medieval period to measure unknown heights

and distances. See sections I-4-5 and II-5-5 in Chapter 1 for other examples.
17Since the astrolabe is typically used to measure the altitude of heavenly bodies, including the sun, in degrees,

the author is calling the markings on the circle “the degrees of the sun.” In this case, he is just instructing us to set the
alidade at 45◦ so that we obtain an isosceles right triangle.
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A

B

Fig. III-1-1. Diagram of astrolabe. AB represents the alidade, and r, measured on a scale of
12, is the gnomonic umbra recta.

A

B

CD

E

F

Fig. III-1-2. A is the top of the hill, E is the eye of the observer, and angle AEB = 45◦. Thus
the height of the hill is AC = AB + BC = CD + ED. Alternatively, the astrolabe can be turned
around to locate F and obtain AC as CD + DF.

.

and observe through the hole the point on the ground; then measure the distance that
separates that point from the foot of the tree or the tower; you will thus find what you are
looking for [Fig. III-1-2].

Or suspend the instrument from your right hand and observe how the top [of the
object to be measured] looks; then read off [on the astrolabe] the gnomonic umbra recta;
determine the ratio of 12 to the “number of the umbra” [r]; observe the same ratio between
[the distance between the top and the horizontal line issuing from your eyes, h, and] the
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h

m

dr

12

Fig. III-1-3. 12:r = h:d, so h =12d/r and the height of the hill is h + m.

h

1212

d

1d
1r2r

Fig. III-1-4. h = 12d1/r1 = 12d2/r2. If ∆ = d2 – d1, then h = 12∆ /(r2 – r1), as stated. Also,
di = ri∆ /(r2 – r1) for i = 1, 2.

distance that separates your feet from the place that is sought [d]; add [to the distance
obtained by this proportion] the height [m] between your eyes and the ground [Fig. III-1-3].

If you cannot reach the foot of the tower, suspend the instrument from your right hand
and read off the degrees of the height [of the tower] from any place, and know the
gnomonic umbra; then, go forwards or backwards and for a second time take the degrees
of the top, and know the gnomonic umbra, and know how many graduations separate the
two umbras [measured on the astrolabe]. Then multiply by 12 the cubits or palms that you
have passed through between the two positions, and divide the product by the difference
between the two umbras; add to this that of the height between your eyes and the ground;
such is the measurement that you are looking for [Fig. III-1-4].
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S

B

OR 12
A

Fig. III-1-5. OA:AB is the ratio of the gnomonic umbra to 12. This is the same as the ratio
OR:SR, where SR is the height of your body.

If you want to know at what distance you were from the base of the object to be
measured in the first position, multiply the cubits that you have passed through in going
forwards or backwards by the first umbra, and divide the product by the difference
between the two umbras. The product is the distance [of the foot of the tower] to where
you were in the first position. Similarly, multiply the cubits by the second umbra and divide
the product by the difference; you will find the distance relative to the second position.

· · ·

To measure the breadth of a river, stand on the bank and suspend the instrument from
your left hand; raise and lower [the astrolabe] so that you can see the other bank of
the river; then read off the gnomonic umbra; compare the ratio of the measurement to
12. Having obtained the result, multiply this ratio by the height of your body; such is the
measure [of the breadth] of the river [Fig. III-1-5].

· · ·

2. ABRAHAM BAR H. IYYA, H. IBUR HAMESHIH. A VEHATISHBORET (THE TREATISE ON

MEASURING AREAS AND VOLUMES)

Abraham bar H. iyya (ca. 1065–1145) was based in Barcelona, where he worked as a
scholar and community leader.18 His Jewish title was nasi (honorary leader), and Arabic title
s. āh. ib ash-shurt.a (head of the guard, transliterated in Latin as “Savasorda”). He wrote on
mathematics, astronomy, astrology, and philosophy, and he is recognized as being the first
Jewish scholar in the Arabic-speaking world to write on science in Hebrew. This choice
of language was, at least in part, due to the Jewish community’s lack of access to the
Arab language in Provence, where he visited. His work includes translations from Arabic
to Hebrew, and he collaborated with Plato of Tivoli on translations into Latin as well.

Bar H. iyya’s mathematical work includes The Foundations of Wisdom and Tower of Faith,
an encyclopedia of which only the introduction and mathematical parts survive,19 and The
Treatise on Measuring Areas and Volumes, from which the following selection is taken.

18For general information, see [Steinschneider, 1893–1901; Lévy, 2001, 2008; Langermann, 2007].
19A Hebrew-Catalan edition was published in [Millás Vallicrosa, 1952]; subsequent research is available in

[Levey 1952, 1954; Rubio, 2000].
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This book was translated into Latin in 1145 by Plato of Tivoli under the title Liber
Embadorum, and made an impact on European scholarship.20

The Treatise on Measuring Areas and Volumes opens with a motivational introduction,
pointing out the value of geometry for secular and holy affairs. The first book then gives some
basic definitions and theorems that serve as building blocks for the rest of the book. These
are mostly theorems from Euclid’s Elements, Books II and III, along with a basic discussion
of similarity and congruence. The treatment is usually more intuitive than Euclid’s and is
accompanied by arithmetic examples.

Book II is the core of the work. Its first part addresses measurements of squares, rectangles,
and rhomboids (deriving their areas, sides, diagonals, etc. from one another), and includes
a geometric treatment of quadratic problems. The second part deals with triangles, and the
third with general quadrilaterals. Part four deals with circle measurements and includes a
trigonometric table for calculating arcs from chords. The fifth part studies the measurement
of polygons by triangulation; it ends with some practical notes on measuring sloping and hilly
lands.

Book III is a simplified version of Euclid’s book on equal division of plane areas. It is
one of the few witnesses to this lost work.21 Book IV provides a brief treatment of solids. The
final section deals with practical tips for land measurement, including the use of an instrument
shaped as a right angle, and concludes by repeating the warning against simple but false rules
of thumb.

This work is not a fully scholarly geometry exposition but a compromise between an
introduction to abstract geometry and a measurement manual. It provides a good intuitive
introduction to geometrical reasoning and some elementary tips for land measurements
(excluding the use of protractors or astrolabes). As the selection below shows, it diverges
in several ways from the scholarly Arabic tradition and is probably closer to the popular
mu↪āmalāt tradition, whose Western branch does not survive in Arabic manuscripts.

Motivations for studying geometry (Introduction)
This section discusses the secular and holy motivations for studying geometry, and it warns
against rule-of-thumb approximations that may result in unjust distributions of property.

[The scriptures say] “I the Lord am your God, instructing you for your own benefit,
guiding you in the way you should go,”22 that is, instructing you in whatever is useful for
you, and guiding you on the way you follow, the way of the Torah. From which you learn
that any craft and branch of wisdom that benefit man in worldly and holy matters are
worthy of being studied and practiced.

I have seen that arithmetic and geometry are such branches of wisdom, and are useful
for many tasks involved in the laws and commandments of the Torah. We found many
scriptures that require them, such as “In buying from your neighbor, you shall deduct
only for the number of years since the jubilee,” and “the more such years, the higher

20See [Curtze, 1902] for an edition of the Latin version with German translation as well as [Millás Vallicrosa,
1931] for an edition in Catalan.

21See [Archibald, 1915] for a reconstruction of this treatise and [Hogendijk, 1993] for an edition of the Arabic
version.

22Isaiah 48:17.
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the price you pay; the fewer such years, the lower the price,” followed by: “Do not wrong
one another, but fear your God.”23 But no man can calculate precisely without falsification
unless he learn arithmetic. . . . Moreover, the Torah requires geometry in measuring and
dividing land, in Sabbath enclosures and other commandments.24 . . . But he who has
no knowledge and practice in geometry cannot measure and divide land truly and justly
without falsification. . . . It suffices to note that the blessed God prides himself in this
wisdom, as is written: “He stood, and measured the earth”25 and “Who measured the
waters with the hollow of His hand, and gauged the skies with a span.”26 So you see from
these writings that the blessed God created his world in well founded and weighed out
measurement and proportion. And a man must be like his creator with all his might to
win praise, as all scholars agree, so from all this you see the dignity of these branches of
wisdom. He who practices them does not practice something vain, but something useful
for worldly and holy matters.

As I see it, Arithmetic, which is useful for worldly matters and crafts as well as for
the practice of many commandments, is not difficult to understand, and most people
understand it somewhat and practice it, so one does not need to write about it in the holy
tongue. Geometry is also as useful for as many matters as arithmetic in worldly matters
and commandments from the Torah, but is difficult to understand, and is puzzling to most
people, so one has to study and interpret it for land measurement and division between
heirs and partners, so much so that no one can measure and divide land rightfully and
truthfully unless they depend on this wisdom.

I have seen that most contemporary scholars in S. arfat27 are not skillful in measuring
land and do not divide it cleverly. They severely belittle these matters, and divide land
between heirs and partners by estimate and exaggeration, and are thus guilty of sin. . . .

Their calculation might mete out a quarter to the owner of a third, and a third to the owner
of a quarter, and there is no greater theft and falsification.

If one says that our fathers cared little for calculations and precision, as they say: “If
the side of a square is a cubit, its diagonal is one and two fifths,”28 whereas in such
a square, with equal sides and right angles, for each cubit in the sides the diagonal,
calculated precisely, is a cubit and two fifths of a cubit and one in seventy parts of a cubit
and a small excess [Bar H. iyya goes on to quote further Talmudic examples stating that
the ratio between the circumference and diameter of a circle is 3, that the excess of the
area of a square circumscribing a circle is 1/4, and that the excess of the area of a circle
circumscribing a square is 1/3]; so one of our contemporaries, who belittles the division
and measurement of land, may wrongfully exclaim: “from the words of our fathers we
learn that calculations need not be too precise; we should learn from them, follow them,

23Leviticus 25:15–17.
24The text here quotes Numbers 35:5, Deuteronomy 21:2, and Numbers 26:53–54.
25Habakkuk 3:6. Here, exceptionally, we use the Bible of King James, as the Jewish Publication Society version

interprets the root mdd differently, translating the verse as “When He stands, He makes the earth shake,” which is not
Bar H. iyya’s reading.

26Isaiah 40:12.
27The term S. arfat used here referred at the time to various areas of the Catalan-Occitan region.
28Talmud, Suka 8a.
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and calculate by estimate and approximation without study and precision. So you cannot
protest and refute us.”

I will reply to him and say: “God forbid! Our fathers did not allow us to dismiss
calculations, nor steal from heirs, nor give any of them more or less than their fair share,
as you sinfully do today. Even though they calculated the diagonal of the square and the
diameter and circumference of the circle and the area between the circle and the square
imprecisely, as you say, nevertheless they warned us and gave us strict orders against
stealing and falsifying in measuring land.29 . . .

All the calculations that you mentioned, where our fathers were imprecise, are
completely harmless. Indeed, the approximation of the diagonal of the square is harmless
in measuring and dividing land, because you don’t need the diagonal when measuring a
square. And the calculation of the excess of a square over a circle and vice versa and
the diameter and circumference of a circle are required only for Sabbath enclosures
and for keeping different kinds of seeds and crops apart. Now anything involving this
[Talmudic] approximation renders the commandments obeyed more strictly, rather than
more leniently, and does not harm anybody’s property. Moreover, in most places where our
fathers approximate imprecisely, they make a note, such as “he only gave an approximate
figure; and in this case it is in the direction of stringency.”30 . . . This is unlike contemporary
errors, which cause harm and great losses to people’s property.

Geometric building blocks (from Book I)
The following is a version of Euclid’s Elements II.4. But note that the diagram is different
from that of Euclid, that the proof relies on elementary cut-and-paste rather than on Euclid’s
bisection of a parallelogram by its diagonal, and that the entire discussion is accompanied by
an arithmetical interpretation. This approach represents a line of transmission or pedagogical
tradition different from the scholarly Euclidean one, and it characterizes most theorems in the
first book of the treatise. The results in this book serve as “building blocks” for the solution
of problems in the subsequent books.

I say that in any line divided into two parts, the square31 of the line by itself equals the
square of each part by itself and double the rectangle of one of its parts by the other. I
give you an arithmetical example. Let this line be 12 cubits in magnitude, and divide it into
two parts, 7 and 5. The square of the whole line by itself is 144. This number equals the
square of 7 by itself, which is 49, and the square of 5 by itself, which is 25 (together they
make 74), and double the rectangle of 7 by 5, which is 70.

To give an example with a diagram, set the line AB of magnitude 12, and divide it at
E [Fig. III-2-1]. The large part, AE, is 7 cubits, and the small part, EB, is 5 cubits. We
construct the square of the line by itself, making ABCD, a square quadrilateral with equal
sides and right angles (as all its sides are of length 12) and with area 144 cubit by cubit.

29The text here quotes Leviticus 19:15 and the Talmud, Baba Mes. i↪a 107b and 61b.
30The text quotes here the Talmud, Suka 8a.
31The Hebrew uses two terms: meruba↪, which is a general term for a quadrilateral, and ribua↪, which is the noun

for the action of making a meruba↪. Both terms are used here in geometric as well as arithmetic contexts (numerical
products and squares). A strict translation would use “quadrilateral” or “the quadrilateral of” throughout. For the
benefit of the reader, however, I used “quadrilateral,” “rectangle,” and “square,” according to the context. But note
that this choice subtracts from the arithmetic overtones of the book.
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Fig. III-2-1.

We construct the square of the large part by itself, which is the rectangle AEGH, and
the small by itself, which is EBIJ. To complete the large square there remain the rectangle
GHCK and the rectangle IJDK. And we know that both these rectangles are the rectangles
of one part by the other, which is 5 times 7. Indeed, the line AGC equals the line AEB,
and the line AG equals the line AE, which is the large part, leaving the line GC that equals
the line EB. Moreover, the line CKD equals the line AEB, and the line CK equals the line
AE. So we find that the rectangle CGHK is the rectangle of the large part by the small.
Further, the line KD equals the line EB, and the line JD equals the line AE, which is
also the large part by the small. We find that the square of the large part, which is AEGH,
and the square of the small part, which is EBIJ, and twice the rectangle of the large part
by the small, which are the rectangles GHCK and IJKD, complete the large rectangle
ABCD, as you see in this diagram.

Geometric presentation of quadratic equations (from Book II)
Interpreted algebraically, this section solves the standard compound quadratic equations and
justifies the solutions geometrically. One should, however, note its divergence from the Arabic
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algebraic tradition. First, these problems are not set here as standard problems to which
other problems should be reduced. They appear without any distinction among a list of other
geometric problems. The choice of 4 (the number of sides) as the coefficient of the linear term
might make them appear less generalizable than they actually are. Moreover, the language
is entirely geometric, without any special word to designate the unknown side. Finally, the
Arabic tradition follows a rather strict normalization of the canonical quadratic problems,
where only additive terms are equated; here two problems equate the difference between the
area and the sides with a given number. As above, this suggests a line of transmission or
pedagogical tradition that diverges from the Arabic scholarly canon.

A square quadrilateral that you take away from the number of its area the number of
its four sides, and [you] are left with 21 cubits of its area: what is the area and what is the
number of each side of the square?

Answer: Divide the number of the sides, which is four, into two. Multiply the two by itself,
which is 4. Add this number to the given number that’s left over from the square, and the
total is 25. Find the root of 25, which is 5. Add half the sides, which is 2, so the total is 7.
This is the side of the square, and its area is 49. He who posed the question subtracted
from the area, which is 49, the number of the four sides, each of which is 7 and all four
28, leaving from the square 21, as he told you.

If you want the proof that your answer to him is correct, let this square be ABCD
with equal sides. It is known that each side has more than four cubits, because he who
posed the question said that we subtracted from the square all four sides [considered as
a rectangle that has] 4 cubits in width and in length equal to the length of the square,
leaving so and so; 32 if the side had no more than 4, he could not have subtracted 4 sides.
We therefore subtract from the line AB a line whose length has 4, which is the line BE,
and from the opposite line CD a line whose length has 4, which is the line CG [Fig. III-2-2].
We make a line from the point E to the point G, and then divide the line BE into two equal
parts at the point H. The lines BH and HE are equal, and each has 2 cubits in length.
You see in this square that the rectangle marked by BEGC is the four sides of the square
joined together, as this rectangle is the line BC times the line BE, which is four, and the
line BC is the side of the square; we count it 4 times, which is the number of the four sides.
So you see that the rectangle BCEG is the four sides of the square. When you subtract
it from the square, there remains the rectangle ADEG, which is known to be 21, as the
number left to [him] who posed the question.

Now observe that the line marked BE is divided into two equal parts BH and HE,
together with another line, EA. But we’ve already told you33 that for any line divided into
two equal parts and joined with another line, the rectangle of the entire line with the joined
line by the joined line, and the square of half the first line, added together, equal the square
of half the line with the joined line both together by themselves. Therefore the rectangle
of the line BA by the line AE and the square of the line EH by itself together equal the
square of the line HA. The rectangle of the line AB by the line EA is the rectangle ADEG,
because its one side AD equals the side of the square and its other side is EA, which is

32Note that while the question is set in terms of subtracting numbers, the solution turns the subtracted 4 sides into
a rectangle whose sides are 4 and the side of the given square.

33Bar H. iyya’s Book I, §29, equivalent to Elements II.6.
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Fig. III-2-2.

the line joined with the line EB. This rectangle is 21, and if you add to it the square of the
line EH, which I know to be 4, the total will be 25. Its root is 5, and it equals the square
of HA. You see that the line HA is the root of the square 25. Add BH, which is 2 cubits,
making a total of 7, which is the line BA. And so the rectangle ABCD is 49 cubits, as I
showed you in this diagram.

If he says: “A square that you add the number of its four sides to the number of its area,
making in total 77, how much is this rectangle?”

In this question take half the number of the sides, which is two. Multiply it by itself,
making in total 4. Add this to the number that he gave you, 77, making 81. Take the root
of this number, which is 9. Subtract from it half the number of sides that you added, and
you are left with 7. This is the side of the square, and its area is 49.

[Translation of the proof is omitted.]
A square that you take away its area from the number of its four sides, and are left with

three.
In the answer to this question you divide the number of the sides in two. Their half is 2

and their square is 4. Take away the three that you were left with, leaving 1, whose root is
1. Subtract it from half the sides, and you are left with 1, which is the side of the square,
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or add the root of the 1 you are left with to half the sides, making 3, which are also the
side of the square. It can be one and can be 3, as this question has two solutions

[Translation of the proof is omitted.]

Measurements of rectangles (from Book II)
This example shows how quadratic problems are solved by reduction to elementary

geometric identities (typically from book II of the Elements, which may be interpreted here
as a form of “geometric algebra”), rather than to canonical quadratic equations. Note also
the terms of the problem: the givens are the difference of two numbers and the root of the
sum of their squares, and the numbers are sought. This is then reduced to the case of given
products and differences. This way of posing problems echoes pre-Arabic geometric-algebraic
traditions.

A non-square rectangle whose diagonal has ten cubits and its length exceeds its width
by two: how much is its length, width and area?

Answer: You know that the square of the diagonal is a hundred. Take away the square
of the excess of the length over the width, which is 2, and its square 4. You’re left with 96
of the hundred. Divide it into two, making 48, which will be the area of the rectangle [this
is justified by reference to a previous section]. If you want to know its sides, of which one
adds two to the other, divide this excess into two, making one, and its square one. Add
this to the area, making 49, whose root is 7. If you add one, which is half the excess, it
will be 8, which is the length line. If you subtract one, 6 will be left, which is the width line.
8 times 6 is 48, which is the area.

The proof for this matter: Let the vertices of a non-square rectangle be marked ABCD
and its diagonal AD, which we set as 10 cubits [Fig. III-2-3]. We know that the line AB,
which is the length, adds to the line AC, which is the width, 2 cubits. And we want to know
from these two numbers the area of the rectangle and the magnitude of each of its sides.
It is known that the rectangle of the line AB by the line AC is the area, and that the square
of the diagonal equals double the area together with the square of the excess of the length
over the width, as I showed you above.34 Therefore, if you subtract from the square of the
diagonal, which is 100, the square of the excess 2, whose square is 4, there remain 96,
which is twice the area. Its half is 48, which is the area.

If you want to know the numbers of the sides, you already know that the length adds
2 to the width. Subtract now from the line AB, which is the length, a line equal to the line
AC, which is the width. This line is BE, leaving the line EA, which is known to be 2, as the
excess of the length over the width. If you bisect the line EA into two at the point G, the
line EG and the line GA will be one cubit each. So EA is divided into two equal parts at
the point G, and you add another line, BE. You know that the rectangle of the entire line
AB, which is the line with the addition, by the line BE, which is the added line, together
with the square of GE, which is the half, equals the square of GB, which is the half with
the addition.35 The rectangle of the line AB by the line BE is the rectangle ABCD, which is
48 cubits. Since the line EB equals the line AC, which is the width, and the square of EG
is one, added together they are 49 and equal the square of GB. Therefore the line GB is

34Bar H. iyya’s Book I, §30 = Elements II.7.
35Bar H. iyya’s Book I, §29 = Elements II.6.
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7 as the root of the rectangle 49. If you add AG, which is one, the entire line AB is eight,
which is the length of the rectangle. If you subtract from it this line, which is again one,
there remain 6 for the line EB, and this line equals the width of the rectangle, which is the
line AC. The rectangle of the length by the width is the area as in this diagram.

In this next example, the solution depends on circle proportion theory, rather than on
book II of the Elements interpreted as “geometric algebra.”

A non-square rectangle whose diagonal together with its side is 18, and its other side
6: how much is its area, and diagonal, and the side added to the diagonal?

He who answers this question will take the square of the known side 6, whose square
is 36. He will then divide them by the diagonal and the side, which are 18, making 2. He
will add 2 to 18, making 20. It is known that half of 20 is the diagonal, which is 10, and
what remains from 18 [after subtracting 10] is the side added to the diagonal, which is 8.
The rectangle of 8 by 6 is the area, which is 48.

The proof for this answer is this. Let this rectangle be the rectangle ABCD, and let its
diagonal be AC and the unknown side AD and the known CD. Set the point A as a pivot,
and make a circle with a compass at distance AC. This is the circle marked ECG. Extend
the line AD to the circumference of the circle both ways to the point E and the point G
[Fig. III-2-4]. You have the line AE equal to the line AC, which is the diagonal, because
they both set out from the pivot called [in Arabic] markaz to the circumference. He who
posed the question set the line AC together with the line AD as 18, so the entire line ED is
also 18 and the entire line EG is the diameter of the circle. And it is known, as I expounded
among the established reasoning,36 that the rectangle of the line ED by the line DG, which

36Bar H. iyya’s Book I, §33 = Elements III.35.
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complements the diameter, equals the square of the line DC by itself, because these are
two lines in the same circle dividing each other, and one of them goes through the pivot
of the circle. Therefore, if you take the square of the line DC, which is six, by itself, and
we divide it by the line ED, the outcome is the line DG, which is 2. The whole line EG is
20, and half the line EG is the line AE, which equals the diagonal. So it is ten, and there
remains 8 for the unknown line AD, as we answered you, and as seen in this diagram.

Measurements of triangles (from Book II)
Here an extension of the Pythagorean theorem to general scalene triangles is used to

determine the height of a triangle from its sides, which in turn would serve to find its area.
If, in the triangle ABC which we gave you [with sides 13, 14, and 15], we wish to take

the height between the sides AB and AC onto the base BC of length 14 cubits, we should
first find the part of the base to one side of the height [Fig. III-2-5]. To extract the longer
part of the base, take the square of the longer of the two sides surrounding the top angle
of the triangle, between which we take the height. This is the side AC of length 15 cubits.
We add to this square the square of the base. These two squares together are 421. We
take away the square of the remaining side AB, which is the short side, whose square is
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169, leaving you with 252. We divide the remainder in two. Its half is 126. Divide this half
by the base, which is 14, and the result is 9, which is the distance along the base from the
height to the long side.

· · ·

We operate [in] this way for every side for which we want to calculate the height. And
once we know the part of the base to one side of the height, we come to know the length
of the height thus: we square the side, take away the square of the adjacent part of the
base, and take the root of the remainder, which is the length of the height.

· · ·

If you ask for the proof for the calculation of the height, look at the diagram of this
rectangle, which I draw for you now [see Fig. III-2-5]. Know that the square of the side AB,
which is opposite to an acute angle, as in this triangle, is less than the square of the side
AC and [the square of] the side BC, which is the base; the excess is double the rectangle
of CD, which is one part, by the entire base BC, as taught in geometry.37 When you divide
this excess in two and this half by BC, you get CD.

37Elements II.13, from Bar H. iyya’s Book I, §27.
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Heron’s rule for determining the area of a triangle from its sides is brought here as well,
without proof (and without reference to Heron).

Although [the calculation of the area of a triangle] is as I said, and all the ways that I
showed you are correct and clear to he who understands, and yield a true result, you can
find a method for calculating and measuring triangles that does not require the height,
namely, the so-called calculation by excesses.

This method here requires that you find half of each of the sides of the triangle, and
sum these halves together, and find the excess of the sum over each side, and note down
these excesses. Then multiply one of them by another, and multiply the product by the
third excess, and multiply what you get from this calculation by the sum of the halves that
you added together. This number is the square of the area of the triangle. If you take the
root of this number, you will find the area.

The author then uses this method to calculate the area of a triangle with sides of length 10,
8, and 6.

This calculation is based on the principles of geometry, and its proof is taught there.
We cannot state it here, and we do not have much need for it here, because you saw that
this calculation is true by the numbers that I gave you.

Circle and arc measurements (from Book II)
This original presentation of the reduction of the area of a circle to that of a triangle is probably
the most famous section of the book. In violation of the classical (Aristotelian) tradition, it
depends on decomposing an area into the lines that it contains.

Once we know the circumference and diameter, we know the area of the whole circle,
which is half the diameter times half the circumference. The proof for this area: We know
that if you open the area of the circle on one side, and straighten all the surrounding lines
from the external line [circumference] to the center, the lines surrounding the area of the
circle will spread and turn into straight lines, decreasing until they turn into a single point,
which is the center point. Such is the line ABCD . . . that I have drawn, where the external
is the largest, and the next is smaller than the former but larger than the next, and so on
to a point, which creates the form of a triangle [Fig. III-2-6]. But we have already taught
the area of a triangle, which is as the height times half the base, which is half the diameter
times half the circumference.

This section presents a table that calculates the arc from the length of a chord. The choice
of the full chord, rather than the half chord (Sine) is typical of the Greek, rather than Indian
or Arabic traditions. The normalization here is rather idiosyncratic: the diameter is counted
as 28 parts, yielding a circumference consisting of 88 such parts.38 The reconstruction of
Table III-2-1 presented below is somewhat conjectural, as the manuscripts are obviously
corrupted by scribal errors and often diverge. We also include an example for the use of the
table, which depends on rescaling the measurement so that the given diameter fits the table’s
value of 28.

Suppose you know the diameter of one circle, and you are given a chord, and want to
know the length of the arc surrounding that chord. You seek a rule that lets you find the
length of the arc from the sagitta or chord, like the rule for finding the length of the diameter

38This value is used because 88 is 3 1
7 times 28. Given the approximation π = 3 1

7 , this guarantees that the parts
of the diameter and circumference are equal.
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from the circumference and the length of the circumference from the diameter. Know that
such a rule cannot be given to you, because the ratio between the chord and the arc is
not fixed, but changes with the changing arcs and chords. . . . As a result, the reckoning
of arcs and chords is difficult for most people. He who reckons it must understand many
rules of geometry.

The scholars of astronomy labored on this for their practice, and I copied from this
reckoning what I saw fit for this book. I drew for you a table divided lengthwise into 28
parts, as I divided the diameter of the circle into 28 parts. And according to this the
circumference is divided into 88 parts. I divided the table along its width into 4 columns,
and noted in the first of these columns lengthwise the 28 parts, and in the remaining 3
columns along the width I noted lengthwise the arc fitting each chord from 1 to 28. This
table of arcs is divided into 3 columns because I divided each part into 60 seconds [sic],
and each of the seconds I divided into 60 thirds, as you see in this table [Table III-2-1]. . . .

An example for this calculation. In a circle whose diameter contains 10 and a half, we
take a chord whose length is six and ask to know the length of the round arc over that
chord. We multiply the length of the given chord, which is 6, by 28, which is the diameter
in the table. We get 168. We divide this number by 10 and a half, which is the diameter
of the given circle. The result is 16, which [with respect to the table’s diameter] is the
chord in the proportion of your given chord to the given diameter. Against it you find in
the table 17 large parts and 2 seconds and 16 thirds, which is the arc appropriate for the
table’s chord. Now multiply again this arc by 6, which is the number of the given chord.
The total is 102 large parts, 13 seconds and 36 thirds. Divide this number by 16, which
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TABLE III-2-1

Chord Arc

Parts Seconds Thirds

1 1 0 3
2 2 0 8
3 3 0 25
4 4 0 55
5 5 1 44
6 6 2 57
7 7 4 42
8 8 7 1
9 9 9 59
10 10 13 42
11 11 18 33
12 12 24 23
13 13 31 29
14 14 40 0
15 15 50 10
16 17 2 16
17 18 16 36
18 19 33 29
19 20 53 29
20 22 17 10
21 23 45 19
22 25 19 4
23 27 0 1
24 28 50 36
25 30 54 52
26 33 20 55
27 36 29 29
28 44 0 0

are the table’s chord, and it will be 6 large parts, 23 seconds and 21 thirds, which is the
measure of the required arc.

Sloping terrain measurement (from Book II)
The area of a parcel of land on a sloping or hilly terrain should be measured, according to this
text, as if it were “projected” on an underlying plane. The reason is that crops and structures
rise up vertically, and therefore the area must be measured only with respect to the vertical
rise it enables. In the case of a hill shaped like a circular arc, the chord-arc table is called for.
Although anachronistic, I cannot help but see in the image of a sloping area reckoned with
respect to a vertical field of crops the modern integral of an area form on a manifold with
respect to a vector field. A crucial difference is that the text considers the area globally, rather
than breaking it up into small (or infinitesimal) local patches.
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All I taught you so far concerns measuring flat lands, where the terrain is spread
straight without climbing up or down. But sometimes you come by terrains sloping down
from the head of the mountain, or submerged low, or round and curved. The surveyors
in these lands are wrong to measure all terrains, high or low, in the same way. You take
care, and if you come by a lot [AB in Fig. III-2-7] hanging from the head of a mountain,
find its height [AE], which is the distance from its beginning to its high end, and subtract
the square of the height from the square of the length of the lot; the root of the remaining
number times the width of the lot is its area.

If the lot falls low, treat its downward fall in the same way. And for curves on top of the
hill, seek and find a way to take its area according to the straight plane on which it sits.
Indeed, neither seed nor building rise but according to a straight angle with respect to the
straight land, and the excess measured in a high or low land is useless for both seeds
and buildings. Therefore you must subtract it and set it against the straight measurement
of the plane terrain.

Those clever in measuring land sought to know the height of lands sloping off
mountains and hills in order to extract the correct measure of the plane terrain whose
area they are to find. They would do thus: They would erect a pole [BC] on the lower part
of the terrain at a right angle with respect to the plane, and set at the head of that pole
another pole [CD] at a right angle, and extend this pole set against the other, and lengthen
it until it would reach the terrain sloping off the mountain wherever it falls. Then they would
measure from the bottom of the pole at the lower part of the terrain to where the other pole
reached higher up [BD]. This number is always found to exceed that pole which extends
from the top of the standing pole to where it touches the ground. They would then use the
ratio of the excess to reckon the excess of the area of the sloping terrain with respect to
its area if the land were plane.

· · ·

Suppose the terrain slopes along a round and curved hill, and you wish to find its true
area, fitting the flat lot on which the land stands. Erect the first pole [BC] at a right angle
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Fig. III-2-8.

to the plane land, and set on top of it another pole [CD] a right angle, and extend it until
it reaches the curved lot as I showed you for the terrain sloping straight from the head
of a mountain [Fig. III-2-8]. You will get the same diagram, except that the line DB is a
round arc, and so is the entire AB, which is the arched terrain, both arcs being part of
the same circle. Both arcs are known, as the arc AB is the length or width of the terrain
you measure, and the arc DB is the arc surrounded by the two lines [poles]. You can find
the chord of the arc DB from the erected triangle DCB by squaring the lines DC and CB
surrounding the right angle C of the triangle DCB, adding the two squares, and taking the
root of their sum, which is the length of the chord DB.

Now that we know this chord we can reckon to find the sagitta and from that the
diameter. It is known that the sagitta divides the arc and the chord into two equal parts.
We let HIG set out at a right angle from the point H at the middle of the chord, dividing the
arc DB in the middle at the point I, and extending until it reaches the line CB at the point
G. So we have the triangle GBH similar to the triangle BCD, and the ratio of DC to CB as
the ratio of GH to HB. Now DC, CB, HB are all known, and the line GH is unknown. If we
multiply the line DC on one side of the ratio [muqash] by the line BH on the other side of
the ratio [noqesh], which are both known, and divide their product by CB, which is known,
the result is the length of the line GH.

From this ratio we come to know the length of the line HI, which is the sagitta. Indeed,
the ratio of DC to DB is as the ratio of GH to GB, and if we multiply GH by DB, which
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Fig. III-2-9.

are both known, and divide the product by the known CD, we find the length of GB. We
measure from the known point G the length of GI, and subtract from the entire line GIH,
leaving us with the length of HI, which is the sought sagitta. And from this sagitta and the
chord DB we can find the diameter of the circle as we taught above [using the proportion
of the parts of intersecting chords]. Having found the diameter, we can find the chord of
double the arc AD, as we taught in the table of arcs and chords. Half this chord is as the
line DL, and if we add to it the known line DC, the entire line CDL becomes known and is
equal to the line BME, which should replace the curved line as in this diagram.

Division of areas (from Book III)
Here are two of the more clever divisions of a plane area into halves, borrowed indirectly from
Euclid’s book On Divisions. The first division divides a quadrilateral from an arbitrary point
on a side, while the second divides a region partially bounded by a circular arc. The Greek
text had disappeared by Bar H. iyya’s time, but an Arabic abstract of the work by the tenth-
century Persian geometer al-Sijzı̄, including the theorems and a few proofs, may well have
been available to him [Hogendijk, 1993]. Compare these to Fibonacci’s divisions in section
II-4-3 of Chapter 1.

The first construction shows how to divide a quadrilateral in half, where no diagonal divides
it in half, starting from a given point on one of the sides.

A different method of division [is effected] by drawing a partition from a point E on the
side AB in this irregular quadrilateral shape, as in the diagram I draw [Fig. III-2-9]. First,
we divide the quadrilateral [into two equal parts] from the vertex B on the line AB, as you
were instructed in the previous diagram [not included here]. The parts are the triangle
BCF and the quadrilateral ABDF, into which the quadrilateral is divided by the line BF
drawn from the point B. We draw a line from point F to point E. If this line is parallel to
the line CB, we draw a line from point E to point C, and the quadrilateral is divided in half
along the line EC. The quadrilateral AECD equals triangle EBC as in the first diagram for
this problem [Fig. III-2-9].

The proof of the division: these are two parallel lines, line EF being parallel to line BC.
The entire triangle BCF, which is half of the entire quadrilateral, is equal to triangle BCE,
both lying between two parallel lines. Therefore, triangle EBC is half the quadrilateral.
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Suppose the line EF is not parallel to the line BC. We draw from point B at the angle of
the quadrilateral the line BG parallel to the line EF. It is either interior to or exterior to the
quadrilateral. Suppose that it is interior, as in the second diagram [Fig. III-2-10]. We draw
a line from point E to point G. It divides the quadrilateral in half, namely, the quadrilaterals
AEDG, EBCG. This is known because, as we noted above, triangle FBC is half the
quadrilateral, and triangle BGF is equal to triangle BGE, as they lie on the same base
between parallel lines. If one adds to each the triangle BGC, then triangle FBC will become
equal to quadrilateral EBCG, and therefore quadrilateral EBCG is half of the entire
quadrilateral. The other half, as we noted in this second diagram, is quadrilateral AEDG.

Suppose the line falls outside the quadrilateral, as line BG in the third diagram
[Fig. III-2-11]. We extend the line CD to the point G, draw lines from E to G and from
E to C, draw from G the line GH parallel to the line EC, and then a line from E to H.
The quadrilateral is thereby divided into two equal parts, namely the triangle EHB and the
pentagon AEHCD.

The proof for this division: Since line EF is parallel to line BG, triangle BFG is equal to
triangle BGE. Similarly, triangle GEH will equal triangle CGH, because they lie between
the parallel lines CE and GH. If we remove the triangle CGH from triangle BFG, and the
triangle GEH from triangle BGE, you will have triangle BGH common to both [remainders].
Therefore remove from these remainders triangle BHE, and there will remain the triangle
BCF equal to triangle BHG. The triangle BCF is half of the quadrilateral, and so is triangle
BEH as in the third diagram.

You can draw a line from point G parallel to line CE in this third diagram, if you know the
ratio of GC to CF, and if you extract, according to the same ratio, LM from the extension
of line FL toward B. Draw the line GHM from point G to point M. This line is parallel to line
CE, since if you draw the line CL in the triangle FMG, the ratio of CG to CF equals the
ratio of LM to LF. Thus the line GH is parallel to the line CE, as we have told you.

In the next construction, the author divides a region partly bounded by a circular arc.
Suppose you have a portion with one round line and the other sides straight, as the

portion ABC that I draw for you, where the two sides AB and BC are on straight lines and
the side AC is somewhat round. This is called a truncated portion. If you wish to cut this
shape into two [equal] parts, draw a straight line AC and divide it in the middle at the point
E. From there draw a height on the line AC reaching the arc CA at the point G. Draw a
line from B to E and this truncate is split into two equal parts along the line BEG, if it goes
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along one straight line as in the first diagram [Fig. III-2-12], or along the lines BE, EG if
they are not on a straight line, as in the other diagram [Fig. III-2-13].

You can also divide the second diagram in another way. Draw a line from B to G, which
crosses AEIC at the point I. Find the ratio of IE to EA, and divide the line AB [at H, so the
parts are in the same ratio] as the ratio of EI to EA. We draw a line from G to H, and the
truncate splits into 2 equal parts, which are the truncate GHA and the irregular BHCG as
in this diagram [Fig. III-2-14].
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Fig. III-2-13.

The proof for this diagram is that the triangle GHE and the triangle BHE, which are
between two parallel lines, are equal. So the truncate AHG equals the triangle ABE
together with the truncate AEG, which are both half the truncate ABC, as in this diagram.

As we saw in Bar H. iyya’s introduction, some of the motivation for the Hebrew literature on
measurement was religious. Here we include an early example from Rashi, which predates
Bar H. iyya, and a later example, by Simon ben S. emah. , which builds on Bar H. iyya’s work.

3. RABBI SHLOMO ISHAQI (RASHI), ON THE MEASUREMENTS OF THE TABERNACLE

COURT

This section was prepared by David Garber
The following comment is by Rashi (acronym of Rabbi Shlomo Is.h. aqi, 1040–1105). Rashi

spent his life in Troyes, except for a decade of studies in Mainz and Worms. His importance
among Jewish exegetes cannot be exaggerated, no doubt supported by his clear, succinct, and
literal style. His commentary on the Talmud is a standard fixture in Talmud editions.
The commentary here applies elementary geometric considerations to the context of the
temple measurements as discussed in the Mishna, deploying a cut-and-paste procedure for
squaring a rectangle. Albeit elementary, the presentation is clever and elegant.

Rashi commentary to: “The length of the [tabernacle] court shall be a hundred cubits,
and the breadth fifty everywhere, the Torah having thus ordained: ‘Take away fifty and
surround [with them the other] fifty.”’ (Eruvin 23b)
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Fig. III-2-14.

“Take away fifty,” which is the excess of the length over the width, and use them to
surround the remaining fifty so as to form [a square of] seventy cubits and 4 palms
[tefahim]. How so? Split [the remaining fifty by fifty] into five strips of ten cubits breadth
and fifty cubits length [Fig. III-3-1]. Set one strip to the east and one to the west. Then
the breadth is seventy and the length is fifty. Next set one to the north and one to the
south. Then you have seventy by seventy, but the corners are missing ten by ten each
with respect to the addition you made. Take from the remaining fifty 4 pieces of 10 by
10, and set in the four corners, so they become complete. There remains one strip of
ten by ten cubits left, which is sixty palms by sixty palms. Split them into 30 strips of two
palms (then you have 30 strips, each ten cubits in length). Altogether they add up to 3
hundred cubits. Set 70 [cubits, or 7 strips] in each direction, then you have seventy and 4
palms by seventy and 4 palms, but the corners are missing two palms by two palms. You
have twenty cubits left. Take eight palms and set them in the corners, so they become
complete. You have 18 cubits and 4 palms left of two palms width, that is, but a trifle,
which, if you try to split to surround the square, the excess would not reach two thirds of
a finger in breadth [Fig. III-3-2].39

39Note that the procedure can be continued indefinitely, but that Rashi shows no infinitesimal inclinations here
and terminates the calculation when the error becomes small enough for the given context.
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Fig. III-3-1. The rectangular court.

Fig. III-3-2. The squared court.
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4. SIMON BEN S. EMAH. , RESPONSA ON SOLOMON’S SEA

This section was prepared by David Garber
Rabbi Simon ben S. emah. Duran (1361 Mallorca–1444 Algiers) was one of the greatest

rabbinical authorities of his time. He made his living as a physician in Aragon but had to flee
to Algiers due to the 1391 riots against local Jews. In Algiers he served in the tribunal of Rabbi
Isaac ben Sheshet. Ben S. emah. ’s responsa book, the Tashbes. (the acronym for the responsa of
Simon ben S. emah. ), deals with about 800 questions and has four parts: three written by himself
and one by other rabbis in his family. The book includes several discussions of mathematical
aspects of religious law.

This excerpt from question 165 of the first part of the Tashbes. includes a discussion be-
tween Rabbi Simon ben S. emah. and Enbellshom Efrayim (perhaps the Mallorcan astronomer
and brother of Ben S. emah. ’s teacher, Vidal Efraim; “En” is an agglutinative Catalan honorary
prefix, equivalent to the Castilian “Don”). The interpretation of the discussion follows [Garber
and Tsaban, 1998].

Enbellshom, following Bar H. iyya (but without mentioning him as his source; see [Garber
and Tsaban, n.d.] for a comparison), claims that religious authorities knew that the value
π = 3, used for religious calculations, was only an approximation, and, moreover, that they
were aware of more exact approximations, such as π = 3 1

7 , which was known at the time.
According to this view, the Talmudic scholars only used the coarser approximation where it
rendered religious rules more strict. This assumption, however, calls for a reinterpretation of
various Talmudic debates.

In contrast, Ben S. emah. , while upholding that religious authorities were no less savvy
than Euclid and Archimedes, claims that their calculations sometimes depended on the
approximation π = 3 even if it rendered religious rules more lenient. Nevertheless, he
qualifies the injunction to adhere to precise calculations. Ben S. emah. seems to reconcile the
two positions by recalling the instability of measurement units and the authorities’ attempts
to render religious law accessible to laymen. The underlying concerns of the debate are the
place of scientific knowledge in the interpretation of religious texts and the limits of exegetic
practices.

In the excerpt presented here, the topic discussed is the measurement of Solomon’s Sea, a
large ceremonial basin in King Solomon’s temple. In Kings I, 7:23, the Sea is stated to be 10
cubits in diameter, 5 cubits high, 30 cubits in circumference, and 2,000 bats in volume (which
equal 6,000 se↩as or 450 cubic cubits or 150 kosher ceremonial purification basins (miqve)).
Since the volume of such a cylinder, assuming π = 3, should only be 375 cubic cubits, the
Talmud suggests that the three bottom cubits were square, and only the top two were circular,
yielding the required volume of 450 cubic cubits. Enbellshom quoted Bar H. iyya’s alternative
estimate of the measures of Solomon’s Sea (without reference to Bar H. iyya, as mentioned
above). This revision was rejected by Ben S. emah. on the grounds stated below.

First we present Bar H. iyya’s argument, as quoted from Enbellshom by Ben S. emah. .40 In
this argument, the scriptures are reinterpreted so as to reduce the diameter of the circular part
of the Sea to cohere with the prescribed volume, circumference, and π = 3 1

7 . Then, assuming
that the size of a miqve is defined as one part in 150 of Solomon’s Sea, it is shown that a

40Levi ben Gershon also considered this issue of the exact dimensions of Solomon’s Sea, but there is no evidence
that Ben S. emah. was aware of Levi’s work. See [Simonson, 2000a, pp. 7–8].
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kosher miqve can be slightly smaller than the standard prescription of 3 cubic cubits. After
discussing the supposed true measurements of the Sea, it is explained how a doubt concerning
the interpretation of the thickness of the rim of the Sea led the Talmudic scholars to reach a
different volume estimate, even though, like him, they supposedly assumed π = 3 1

7 .
It is written that [Solomon’s Sea] is 10 cubits from side to side, circular in form, 5 cubits

high, with circumference 30 cubits round. It seems at the beginning that this neglects the
seventh [in π = 3 1

7 ]. But here things are precise as well, if one looks carefully, for it says
that “it was a palm thick, and its brim was made like that of a cup, like the petals of a lily.”41

It appears that the circular part is one palm away from the edge of the square, which
makes two palms in diameter out of 5 palms per cubit. . . . If you multiply 9 cubits and
three fifths [= 10 cubits less 2 palms] by three and a seventh, the external circumference
of the Sea will be 30 cubits and a sixth approximately.42 Its inner circumference should
be 30 cubits, so the thickness of the rim, which is like a flower, is about two thirds of a
finger.43

If you multiply half the diameter by half the circumference correctly, and consider the
width, you find that the area of the circle is 72 cubits and 2 ninths.44 This is the volume
per one cubit height. For two cubits [in height], it is 144 cubits and 4 ninths. The Sea was
5 cubits high, the first 3 being square and the top two being circular. So the volume of
the lower square three cubits being 3 hundred [cubic] cubits, the volume of the entire Sea
would be 444 [cubic] cubits and 4 ninths. . . . When you multiply by 4 and a half [bats per
cubic cubits], it comes to two thousand, in accord with the scriptures: “its capacity was
2000 bats.”45

· · ·

The [religious authorities] figured a miqve as one part of 150 of the Sea. Since the . . .

bat is 3 se↩as, the Sea was 6000 se↩as. Since a miqve is 40 se↩as, it is one part of 150
of the Sea. The volume of 3 [cubic] cubits is 13 bats and a half, which are 40 se↩as and a
half.46 According to this calculation, the size of a miqve of 40 se↩as is a cubit by a cubit at
a height of 3 cubits less one part in 27 of a cubit.47 If [the religious authorities] added to
the size of a miqve [saying it is one by one by three cubits], they did so for strictness, as
was their manner.

41Kings I, 7:26.
42The precise value is 9 3

5 × 3 1
7 = 30 6

35 .
43This calculation is based on 4 fingers per palm and 6 palms per cubit (as opposed to the 5 palms per cubit

above—both possibilities occur in the scriptures). Then, given π = 3 1
7 and the above outer circumference, to obtain

an inner circumference of 30 cubits, we require the rim’s thickness to be 6
35 × 1

2×3 1
7

cubits. Multiplied by 24 fingers

per cubit, this makes 36
55 fingers, which is approximately 2

3 of a finger.

44The actual product is 30
2 × 9 3

5 −2× 3
110

2 = 72 − 9
22 (where 3

110 cubits are 36
55 of a finger, according to the

previous calculation). This error is carried over from Bar H. iyya.
45Kings 1, 7:26.
46According to the above, 2000

444 4
9

= 4 1
2 is the number of bats in a cubic cubit, so a miqve which consists of 3 cubic

cubits has 3 × 4 1
2 = 13 1

2 bats. A bat is 3 se↩as, so a miqve is 3 × 13 1
2 = 40 1

2 se↩as.
471 × 1 × 3 cubits give 40 se↩as and a half, so 1 × 1 ×

(
3 − 1

27

)
cubits would give precisely 40 se↩as.
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Fig. III-4-1. Solomon’s Sea according to the Talmud.

Do not think that the Talmudic authorities had figured the square-shaped three cubits
[bottom part of the Sea] to be 30048 [cubic] cubits, and 150 for the circular two cubits [top
part of the Sea], with the diameter of the circle ten whole cubits, because then they would
have been wrong in two ways, which is not the case, God forbid. First, if the diameter had
been ten whole cubits, the volume . . . [of the circular part would have been 2 x 52 x 3 1/7
=] 157 and a seventh. But they figured for the two cubit [high] circular part only 150 cubits
[Fig. III-4-1].

Second, if this had been the case, then they would have neglected the missing palm
in the diameter, whereas it is explicitly written that it was one palm thick. How could they
say something so far from the truth as this? That is impossible. But, it is my opinion that
they had a doubt whether the missing palm was on all sides (the diameter being 10 cubits
less two palms), or in the diameter (leaving 10 cubits less a palm). The volume per one
cubit [height] of the Sea, according to the scholars of geometry [that is, π = 3 1

7 ], with
a diameter of 10 cubits less a palm (based on six palms per cubit, which they agreed
upon for strictness),49 would be 76 [cubic] cubits approximately; the volume per one cubit
[height] of the Sea with two palms removed from the diameter, would be 73 [cubic] cubits.50

They took an average, and per one cubit [height] of the Sea, they figured 75 [cubic] cubits;
per two cubits [height], they figured 150 [cubic] cubits.

48The text reads 450, but this is clearly an error.
49Recall that a cubit sometimes had 5 palms and sometimes 6.

50 3 1
7

4 ×
(

10 − 1
6

)2 ≈ 76;
3 1

7
4 ×

(
10 − 2

6

)2 ≈ 73.
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Fig. III-4-2. Solomon’s Sea according to Bar H. iyya and Enbellshom.

We proceed with several excerpts from Ben S. emah. ’s response (leaving out his critique
of the calculation error and the wavering between 5 palms and 6 palms per cubit). First,
concerning the revised estimate for a miqve:

I do not see this as correct. Your error is that you assume that h. azal51 extracted the
volume of a miqve from Solomon’s Sea, and this is not so. The scriptures do not state that
the Sea measured 150 miqves. H. azal first figured that the volume of a miqve is cubit by
cubit and 3 cubits high exactly, with no approximation. Indeed, they learned from “he shall
bathe his body in water”52 that a person’s entire body should be submerged in a miqve,
and they estimated the size of an average man to be one cubit by one cubit, three cubits
tall.

· · ·

Then they needed to figure Solomon’s Sea (which contained 2000 bats, which are 150
miqves) in terms of cubits, given the rate of one cubit by one cubit, 3 cubits high [per
miqve]. To match this, they stated that only the top two cubits were round, and the 3
bottom cubits were square. If it were all round, it would not have held 2000 bats of liquid.

Second, concerning the attribution of 10 cubits to the width of the square part, rather than
the diameter of the circular part:

Your interpretation, that the ten cubits from rim to rim are not the inner measure, but
that of the three square lower cubits, as arises from your words, contradicts the scriptures.

51Hebrew acronym for “the Scholars, Blessed be their Memory.” This refers to the religious authorities from the
time of the second temple to the closing of the Talmud.

52Leviticus 16:24.
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Indeed, the scriptures say53 that from rim to rim in the circular part the width was ten
cubits. The scriptures do not mention the square part—this is the interpretation of h. azal,
in order to fit, as I mentioned, the two thousand bats content. . . . Since the scriptures do
not mention the squareness, how can you interpret that the [10 cubits] width concerns
that which is not mentioned?

· · ·

It seems that you think that the scriptures gave two magnitudes, one for width and one
for circumference. And as you see that these two magnitudes do not fit according to the
geometers [that is, with π = 3 1

7 ], and would contradict each other if they concerned the
same object, so you interpret them as concerning two [different] objects. You assigned
the width to the square part, and the circumference to the circular part, and make up what
is missing in the scriptures, namely that the circumference of the square part is 40 cubits
and the width of the circular part is 9 cubits and three fifths approximately. This is fitting
to your intention, and would have been acceptable by the mind, if the words of h.azal had
not forced us to reject it. You turned things around to serve your purpose, as I will show
you well in accordance with the scriptures.

H. azal, whose words you seek to correct, would not be pleased by them at all, and
would reject them. They explicitly said that the width of ten cubits relates to the inside
of the circular part, as was stated in Eruvin [14a]. . . . Thus your building upon this
interpretation is “like a spreading breach that occurs in a lofty wall, whose crash comes
sudden and swift.”54

Third, the attempt to reckon with the thickness of the rim is rejected.
I said that you turned things round to serve your intention. This relates to your attempt

at forcing from the scriptures that the width of the circular part was 9 cubits and 3 fifths
approximately, saying that the circle was a palm away from the edge of the square, which
makes two palms in diameter, counting five palms per cubit; the two palms, you say, are
to be removed. But I cannot find this statement in h.azal, and you too wrote that they
were in doubt as to whether the missing palm was in all directions, or referred to the
entire diameter, making half a palm on each side. . . . Your vision that the circle is a palm
away from the edge of the square is prophetic, because the opinion of h. azal and the
literal text of the scriptures is that the width, which is a palm, is so from bottom to top,
and does not subtract anything neither at the top or the bottom, since the measurement
[of the diameter] is taken on the inside. But close to the rim, this palm dwindles so
that at the rim it is [as thin as] a flower. The excess thickness of one palm is on the
outside.

Your interpretation also suffers from this, that the ten cubits width in the square part,
you measure from the inside, discarding the thickness [of the rim]; but in the circular part
you count them with the thickness. . . . Moreover, you add to the thickness two palms as
well as the rim, which is like a flower, which contradicts the scriptures.

53Kings I, 7:23.
54Isaiah 30:13.
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Finally, here are Ben S. emah. ’s alternative explanations for the discrepancy between the
Talmudic calculations and the more precise value of π .

We should say, like the tosafot, that this is an approximation, and that it neglects the
extra seventh [in the value of π ], and that the sages also neglected the extra 7 [cubic]
cubits and a seventh [that would arise from replacing π = 3 by π = 3 1

7 in calculating the
volume of a cylinder with diameter 10 and height 2, as above], which is only one part in
21 of the circular part, making approximately two miqves and a third.

This is foreign neither to the way people speak, nor to the scriptures, which we find
speaking in mundane manner with imprecise statements. . . . Moreover, it is not foreign to
h.azal to make things clearer for their disciples, especially as they follow here the literal
meaning of the scriptures and rely on them.

If you wish to follow another way, and retain [the measurements stipulated by h. azal as
well as the revised value of π ] without any difficulties arising from Solomon’s Sea, you can
say that the cubits measuring the height were smaller and the cubits measuring a miqve
larger, as is demonstrated in Eruvin [3b]. Between the larger and smaller cubits, you can
fit the extra 7 [cubic] cubits and a seventh. . . .

I swear that everything you write about the Sea is very precise. I do not dispute it
because it is imprecise, but because I see that it does not reflect the view of h.azal.

5. LEVI BEN GERSHON, ASTRONOMY

Wars of the Lord was Levi ben Gershon’s (see section I-6) major work on religious
philosophy, probably completed by 1330. The Astronomy, which survives in separate
manuscript copies from the rest of the treatise, forms Book V, part 1 of that work. It was
translated into Latin in 1342 by Petrus of Alexandria. Meanwhile, chapters 4 through 11 of the
Astronomy appeared separately as the treatise On Sines, Chords and Arcs, and the Instrument
“the Revealer of Secrets,” where the latter refers to what is known as the Jacob Staff.

Calculation of Sines and “heuristic reasoning”
In section 3 of chapter four, Levi constructs his table of Sines in a way similar to Ptolemy’s

construction of his table of chords in the Almagest. That is, he first computes the Sines
and chords of many angles using basic geometry as well as the sum formula, the difference
formula, and the half-angle formula. For example, the chord of 36◦ is calculated from Euclid’s
result on the side of a decagon; then he can calculate the Sine of 18◦. From the latter and the
well-known Sine of 30◦, Levi can calculate the Sine of 12◦ and therefore the Sines of 6◦, 3◦,
1 1

2
◦
, and 3/4◦, as well as the Sines of 15◦, 7 1

2
◦
, and 3 3

4
◦
.

He next shows how he will compute the Sine of 1/4◦ , his desired minimum interval in
his table, by a method not strictly “geometrical.” This method, “heuristic reasoning” (heqesh
tah. buli), is a general one that he uses elsewhere in the Astronomy. Levi much preferred a
“demonstrative” argument, based on Euclidean precepts, but realized that in certain cases this
was impossible. So one alternative was a type of “conditional reasoning,” based on making
certain assumptions, then checking their consequences, and then repeating until one reached
the solution as closely as desired by successive approximation [Mancha, 1998]. For this
particular calculation, Levi explains that the tables of Sines with intervals of 1◦ have errors of
as much as 15 minutes of arc when trying to determine an arc corresponding to a given Sine,
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especially for arcs near 90o. With his method, he believes that “no perceptible error arises
from linear interpolation.”

We can also easily find the Sine of 1/4◦ by heuristic reasoning [heqesh tah. buli]. For
once the Sine of 8 1

4
◦

[from the Sine of (15 + 1 1
2

◦
)] is known, we also know the Sine of

4 1
8

◦
, and, therefore, by successive halvings, we will know the Sine of

( 1
4 + 1

128

)◦
. Similarly,

from the Sine of (4–1/4◦) [= 3 3
4

◦
] we can proceed until we find the Sine of

( 1
4 − 1

64

)◦
. When

we investigated this in this way, we found that the ratio of the Sine of
( 1

4 + 1
128

)◦
to the Sine

of
( 1

4 − 1
64

)◦
is very nearly equal to the ratio of the first arc to the second one, in such a

way that there is no difference between these ratios even to the fourth sexagesimal place,
although they differ slightly in the fifth. Therefore, we established [by heuristic reasoning,
that is, linear interpolation] that the Sine of 1/4 is 0;15,42,28,32,7. From this amount we
can find all the remaining Sines.

In chapter 49, Levi further explains the method of heuristic reasoning. Although the method
as described here is the classical method of “double false position,”55 Levi’s main contribution
is that one can iterate this method in nonlinear contexts to approximate the desired result. In
other words, after calculating a value by means of double false positioning, one can use it as
input for a further iteration of double false positioning, and so on. (See [Plofker, 2002] for
more details on such iterative approximation in India and Islam.)

It is appropriate to know that it is not possible to do in a quick way a demonstrative
research in order to show how our model must be constructed. . . . Therefore, the
investigations which lead us to the truth necessarily are of the kind of heuristic reasoning,
which are made from trial and investigation, which approach step by step to the truth until
it is reached. These types of reasoning belong to the category of conditional reasoning,
and there are two classes of them, one of which is taken from an excess and a defect; the
second one is taken from two investigations in excess or from two investigations in defect.

For illustrating the first class, we say: if when we considered a determined first quantity,
it followed an equation greater than that we have by a given second quantity, and if when
we supposed a certain third quantity, it followed from it an equation smaller than that we
have by a given fourth quantity, it is known, according to the [rules of] proportion, that it is
necessary to suppose a mean [quantity] between the first and the third, so that the ratio
of the difference between the first and the mean to the difference between the first and
the third is equal to the ratio of the second to the sum of the second and the fourth.56

To illustrate the second class, we say: if when we supposed a certain first quantity there
followed from it an equation greater than that we have by a given second quantity, and
if when we supposed a certain third quantity there followed from it an equation greater
than that we have by a given fourth quantity, which is smaller than the second one, it is
known, according to the proportion, that it is necessary to suppose a fifth quantity so that
the third is the mean between the first and the fifth, and the ratio of the difference between
the first and the fifth to the difference between the first and the third is equal to the ratio
of the second to the difference between the second and the fourth. And one proceeds in

55See section V-3 below and section II-1 in Chapter 3 for more on the double false position.
56Suppose you wish to find a such that f (a) = b. Suppose further that f (a1) − b = b1and b − f (a2) = b2. Then

assuming that f is affine, a1−a
a1−a2

= b1
b1+b2

.
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a similar way if the second and fourth quantities are derived from equations smaller than
those we have.57

The conditional reasoning would be simple when we say: if when we suppose a certain
first quantity, there followed from it an equation of a given second quantity not equal to the
third quantity which we have, it is known, according to the proportion, that it is necessary
to suppose a fourth quantity in such a way that the ratio of the fourth to the first one is
equal to the ratio of the third to the second.58

At this point the Latin manuscript has a long marginal note, not included in the Hebrew
original, which clarifies the previous passage with some examples.

Example of excess and defect: the first [quantity] is 10, that will produce 30, which is 6
[units] greater [than what we have], and this is the second; the third is 6, that will produce
15, which is 9 [units] smaller [than what we have], and this is the fourth; the fifth is 8;24,
that will produce 24, what we have.59

Example of diverse excess: the first [quantity] is 10, that will produce 36, which is 12
[units] greater [than what we have], and this is the second; the third is 8, that will produce
30, which is 6 [units] greater [than what we have], and this is the fourth; the fifth is 6, that
will produce 24, what we have.60

Example of diverse defects: the first [quantity] is 6, that will produce 24, which is 12
[units] smaller [than what we have], and this is the second; the third is 8, that will produce
30, which is 6 [units] smaller [than what we have], and this is the fourth; the fifth is 10, that
will produce 36, [which is] what we have.61

The previous cases are [examples of] composite conditional reasoning; the following
one is simple. The first [quantity] is 10, which produces 30, which is the second, which is
not equal to 24, which is what we have, and it is the third. Therefore, 8, which is the fourth
and whose ratio to 10 is equal to the ratio of 24 to 30, produces 24.62

Solving triangles by means of sine tables
In section 5 of chapter four, Levi treats the solution of triangles. He begins with the procedures
for right triangles and then moves on to general plane triangles. Certainly, his methods were
not new, as they were available in various Islamic trigonometries. Nevertheless, this was one
of the earliest treatments in Europe of the basic methods for solving plane triangles. The
methods were then applied later in his work for solving astronomical problems.

The procedure for finding the angles and sides of a triangle when some of them are
known.

If two sides of a right triangle are known, the remaining side and angles may be found.
Let ABG be a right triangle, two sides of which are known; I say that the remaining side and

57Suppose you wish to find a such that f (a) = b. Suppose further that f (a1) − b = b1, f (a2) − b = b2, and

b2 < b1. Then assuming that f is affine, a1−a
a1−a2

= b1
b1−b2

. Similarly for f (a1) , f (a2) < b.
58This is the simpler case of the Rule of Three, which applied to a linear f .
59You wish to find a such that f (a) = 24. Suppose that f (10) − 24 = 6 and 24 − f (6) = 9. Then a is 8;24

(sexagesimal) (or 8 2/5).
60You wish to find a such that f (a) = 24. Suppose that f (10) − 24 = 12 and f (8) − 24 = 6. Then a is 6.
61You wish to find a such that f (a) = 36. Suppose that 36 − f (6) = 12 and 36 − f (8) = 6. Then a is 10.
62This relates to the case of a linear f . If f (10) = 30, and we wish to get the result 24, the argument of the

function should be 10 × 24
30 = 8.
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Fig. III-5-1.

Fig. III-5-2.

angles are also known. Whichever two sides are known, the third side is known because
the square of the side that is the hypotenuse is equal to the sum of the squares of the two
remaining sides. Thus, if they are known, it is known; and if it and one of the remaining
sides are known, the third side is also known because its square is the difference between
the square of the hypotenuse and the square of the other side.

Let us assume that angle ABG is a right angle, and that sides AG and BG are known
[Fig. III-5-1]. I say that angle BAG is known, for if we consider point A as center, draw an
arc GZ with AG as radius, and join line ABZ, it follows from the above that line BG is the
Sine of arc GZ. Since lines AG and BG are known, it follows that line BG is known in the
measure where line AG is the semidiameter of 60. In this measure the arc corresponding
to line BG considered as a Sine can be looked up in the table of arcs and Sines. When arc
GZ is found in this way, angle BAG is also known, as is clear from Euclid. From it angle
BGA is also known, because it is the complement in 90◦, inasmuch as angles BAG and
BGA together are 90◦.

If all sides of any triangle whatever are known, its angles are also known. Let the sides
of triangle ABG be known; I say that its angles are also known.

We drop perpendicular BD from point B to line AG extended if necessary—in the first
figure [Fig. III-5-2] point D falls within the triangle, and in the second figure [Fig. III-5-3] it
falls outside the triangle. I say that the amount of GD is known. When we take the excess
of the squares of lines GB and GA over the square of line AB in the first figure, or the
excess of the square of line AB over the squares of lines GB and GA in the second figure,
and divide it by twice line GA, the result is equal to line GD—as will be clear with a little
thought concerning Book II of Euclid [Elements II.12, II.13]—and thus the amount of line
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GD is known. Since the square of line GB, which is known, is greater than the square
of line BD by [the amount of the square of line GD], the amount of line BD is known.
Therefore, it follows as before that all the angles of right triangle BDG are known. In the
first figure this yields angle BGA and one part of angle GBA, namely angle GBD, and in
the second figure angle BGA is known because angle BGD, its supplement in two right
angles, is known; also angle GBD is known. Moreover, since lines AG and GD are known,
the amount of line AD is known. Thus all the sides of right triangle BDA are known, and
therefore angle BAG is known in both figures. The remaining angle GBA in the triangle is
known because angle GBD is known and angle DBA is known, from which it follows with
a little thought that angle GBA is known in both figures. Therefore it is clear that all sides
and angles of triangle ABG are known, and this is what we sought to demonstrate.

If we know two sides of any triangle whatever and one angle such that one of the
known sides subtends it, the other angles and the third side are known.63

Let the two known sides be lines AB and BG in triangle ABG, and let angle BAG be
known [Fig. III-5-4]. I say that line AG is known and that the remaining angles are known.
Let us circumscribe circle BAG about triangle BAG, and let us consider the diameter of
the circle to be line AD. Since angle BAG is known and we consider it as an inscribed
angle, . . . arc BG is known. Therefore, the amount of the chord of this arc may be found
from the table of arcs and Sines in the measure where line AD is 120, and so the ratio of
line BG to line AD is known. Since the ratio of line BG to line AB is also known, the ratio of
line AB to line AD is known. It follows that line AB is known in the measure where line AD
is 120, and thus arc AB may be found in the table of arcs and chords. Since both arcs BG
and AB are known, the remaining arc GA is known, from which angle BGA and line GA
are known by the aforementioned procedures. Thus it is clear that the sides and angles
of triangle ABG are all known, and this is what we sought to demonstrate.

You ought to understand from this explanation that if you consider the diameter of
the circle to be 60 and the circumference to be 180◦, it is not necessary to compute the
chords of these arcs in a table of arcs and chords, because the table of arcs and Sines
serves this purpose inasmuch as the Sine is half the chord of twice the arc. The ratio of

63Although Levi is discussing what is now known as the “ambiguous” case, he is assuming that in any particular
problem, one of the unknown angles is assumed to be acute or obtuse, so there is only a single solution.
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the Sine of any arc to the semi-diameter of the circle is equal to the ratio of the chord of
twice that arc to the diameter of the circle. Therefore in this proof we chose the second
alternative, so that our remarks would be brief. We mention this here to avoid confusion
in our subsequent proofs. From this theorem it follows that in any triangle whose sides
are straight lines, the ratio of one side to another is equal to the ratio of the Sines of the
angles that they subtend. It also follows with a little thought that if the angles of a triangle
with straight sides are known and one side is also known, the remaining sides are known
because their ratios to the known side are known.

If two sides of any triangle are known, and the included angle is also known, the
remaining angles and sides are known.

Consider triangle ABG whose sides AB and BG are known and angle ABG is also
known; I say that line AG is known and that the remaining angles are known. If angle
ABG is a right angle, this is clear from the preceding. Moreover, if it is acute as in the first
figure [Fig. III-5-5] or obtuse as in the second figure [Fig. III-5-6], line AG is known. Let us
draw perpendicular AD from point A to line BG, extended if necessary. In either case it is
clear that angle ABD is known because either angle ABG or its supplement in two right
angles is known. There remains angle DAB which is known because it is the complement
in a right angle. Therefore all angles and one side of triangle ABD are known, and the
rest may be found. Moreover, lines AD and DG are known in both figures. The amount of
line AG in right triangle ADG is known, and thus the angles of triangle ADG are known
including angle AGD. It was already assumed that angle ABG is known; there remains
angle BAG which is known because it is the supplement in two right angles, and this is
what we sought to demonstrate.
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Fig. III-5-6.

IV. SCHOLARLY GEOMETRY

This section is dedicated to geometry in the tradition of Euclid, Apollonius, and Archimedes.
We start from Levi ben Gershon’s attempt to reduce the parallel postulate to a simpler,
more intuitive axiom. We continue with Qalonymos ben Qalonymos’s discussion of regular
polyhedra, Bonfils’s circle measurement, and one of the discussions of the asymptote of
the hyperbola. To conclude, we bring the work of one of the most enigmatic and unique
Hebrew mathematical authors: Abner of Burgos (also known as Alfonso di Valladolid), who,
in his treatise on squaring the circle, which survives only in a fragment, made interesting
contributions to the quadrature of lunes and the Western reemergence of the conchoid.

1. LEVI BEN GERSHON, COMMENTARY ON EUCLID’S ELEMENTS

Levi ben Gershon’s (see section I-6) commentary on Books I–V of Euclid’s Elements
was probably written shortly after 1337. We do not know Levi’s sources, but there were
numerous commentaries on the Elements written in Arabic starting in the tenth century, some
translated into Hebrew, as well as commentaries written in Latin. The one to which Levi’s
work seems closest is The Book Explaining the Elements of Euclid, originally attributed to
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Nas.ı̄r al-Dı̄n al-T. ūsı̄ (1201–1274), but more recently attributed to his son or one of his students
[see Rosenfeld, 1988, pp. 80–85; and Lévy, 1992, pp. 90–91]. Levi’s commentary deals with
selected definitions, postulates, and theorems from the first five books of the Elements.

Here we only present the commentary on the parallel postulate (postulate 5), with Levi’s
proof of the postulate beginning with his own more “self-evident” postulates. Levi’s first
postulate is essentially that a straight line can be extended to make it greater than any given
straight line. His second postulate is that if the two lines in question (in Euclid’s postulate 5)
form an acute and a right angle, respectively, with the cutting line, then they approach one
another on the side of the acute angle and grow farther apart in the opposite direction. (The
latter part is omitted from the formulation but is used in the proof.) This leaves two tasks: (1)
to show that when the two intersection angles summing to less than two right angles are obtuse
and acute, the lines still approach one another (this is achieved in lemma 9), and (2) that the
two approaching straight lines actually intersect (shown in the final proof). (See section IV-5
of Chapter 3 for a “proof” of the parallel postulate by al-Maghribı̄.)

Euclid says: if a straight line falls on two straight lines, forming [on one side] two interior
angles less than two right angles, then, if the lines are prolonged on the same side, they
will intersect.

Levi says: This proposition is very profound; it is not easy to validate it. In fact, it is not
widely accepted that if the two interior angles are less than two right angles, one being
obtuse and the other acute, then the two lines intersect. By the same token, the following
statement may not be considered as one of the common notions: if a [straight] line falls on
two straight lines, forming on one of the two sides two interior angles less than two right
angles, then it follows that any other straight line falling on those [straight lines] forms also
on the same side two interior angles less than two right angles. Rather, since in the man
of subtle intelligence who immerses himself deeply in this science, this produces a doubt,
the more so for any novice, the understanding of this premise is not easy. Furthermore, it
has been demonstrated in this science [geometry] that [it is possible] for two lines having
between them, at the beginning, a certain distance, that they approach each other as they
are extended but never meet, even when prolonged to infinity.1 This premise can also be
subject to doubt, although we acknowledge that it is generally recognized that such lines
approach one another.

The premise in question is particularly necessary to this science, as is seen with
proposition 29 of the first book of this work [Euclid’s Elements] and the following—from
that premise one derives the properties of parallel lines and the equality of the sum of the
three angles of any triangle with two right angles. Thus, if it were to fail, the geometry in its
totality, or in its major part, would fail. This is why we thought it appropriate to establish it
by a proof. This demonstration takes place after the preceding twenty-eight propositions of
the book, since Euclid did not have recourse to this premise for any of these propositions.

We pose as a preamble two well-known premises. The first is that which Euclid has
mentioned in the fifth book: in essence, he states that it is possible to multiply any line to
obtain a line greater than a certain given line. This premise is very clear; even more so
given all that had been delineated before.

1See section IV-5 on the hyperbola and its asymptote.
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The second premise: the straight line which is inclined [to another straight line]
approaches [the second line] on the side where an acute angle is formed [with a line
crossing both of these that is a perpendicular from the first line to the second].2 This is
established by considering the sense of the definition; in fact, the notion of inclination
means nothing other than the fact that [one line] approaches [the other] in the direction in
which they are inclined.

It follows that two straight lines drawn to form two acute angles [with the same straight
line] approach one another in the direction [of the acute angles], since each of these is
inclined to the other, the notion of acute angle expressing the fact that the line [forming
one of the sides of the acute angle] is inclined in the direction [of the line forming one side
of the other acute angle]. It follows that on the opposite side they move away, for they
approach one another on this side; and also, because on that second side, they depart
from the two obtuse angles and each is inclined to the side opposite to that of the other.
This is clear and there can be no further doubt as to its truth.

Here ends the commentary on the beginning of [Euclid’s] book.

· · ·

Here are the propositions that are necessary to demonstrate that: if a straight line falls
on two straight lines and forms, on one of the sides, two interior angles less than two
right angles, then the lines, if they are prolonged on the same side, will intersect. These
propositions have their place after the first 28 propositions of the first book [of Euclid’s
Elements].

[Lemma 1:] There does not exist any quadrilateral figure having all its angles obtuse or
having all its angles acute.

Let the quadrilateral be ABGD; we claim that it is impossible that all angles be acute
or all obtuse. Proof of this impossibility: Suppose that it is possible and assume first that
the angles are acute. Prolong the line AB in a straight line in two directions to the points H
and T; and also prolong the line GD in a straight line in two directions to the points Z and
E [Fig. IV-1-1]. Since each of the two angles TAG and AGE are acute and thus the angles

2This addition to Levi’s words helps make sense of Levi’s assumption [Lévy, 1992, p. 101]. Tony Lévy justifies
it by noting that in Levi’s Treatise on Geometry, he defines the “approach” of one line to another in terms of a line
cutting both. In addition, this addition seems necessary to allow Levi to reach the conclusion in the next paragraph.
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HAG and AGZ are obtuse, the two lines ZE, HT separate from each other in the direction
of the two points H and Z and approach each other in the direction of the two points T and
E. Also, since each of the two angles ABD and BDG are acute, each of the two angles
TBD and BDE are obtuse, and thus the two lines HT, ZE separate in the direction of the
points T and E, and approach each other in the direction of the points H and Z. They
therefore separate on the side of the two points E and T, but also approach on the side of
the two points E and T. This contradiction is impossible. Thus the four angles of the figure
ABGD cannot all be acute. In the same way, one demonstrates that it is impossible that
each of the four angles of the figure ABGD is obtuse. As a consequence, there cannot
be a quadrilateral figure of which all the angles are obtuse or of which all the angles are
acute. QED

[Lemma 2:] We wish to construct a quadrilateral figure for which the opposite sides,
taken in pairs, are equal to each other.

Given two straight lines DG, GE of arbitrary length, meeting at the angle DGE, we draw
the straight line DE [Fig. IV-1-2]. Construct on the line DE the triangle EZD, where each
line is congruent to the corresponding line of triangle DGE, that is, the line EZ to the line
GD, and the line ZD to the line GE. The figure GDEZ is thus a quadrilateral of which the
opposite sides, taken in pairs, are equal to each other. We have therefore constructed a
figure of which the opposite sides, taken in pairs, are equal to each other. QED

[Lemma 3:] Every quadrilateral figure in which the opposite sides are equal to one
another also has the opposite angles equal.

Let the quadrilateral ABGD have the side AB equal to the side GD and the side AG
equal to the side BD; I say that the two opposite angles GAB, GDB are equal and the
opposite angles ABD, AGD are also equal [Fig. IV-1-3]. The proof: Draw the two straight
lines AD, BG. Since the two sides AB, BD are equal to the two sides GD, AG, each to its
corresponding side [in the triangles ABD, DGA], and the base AD is common, thus the
angle AGD is equal to the angle ABD, to which it is opposite. Similarly, since the lines
AG, AB are equal to the lines BD, DG, respectively, and the base BG is common, thus the



February 26, 2016 Time: 03:47pm chapter2.tex

Scholarly Geometry 335

Fig. IV-1-4.

angle GAB is equal to the angle GDB, to which it is opposite. It is thus established that the
quadrilateral figure ABGD has opposite angles equal. Thus, every quadrilateral figure of
which the opposite sides are equal in pairs has the opposite pairs of angles equal. QED

[Lemma 4:] Given an isosceles triangle, if one extends one of the two equal sides in a
straight line from their point of intersection by a distance equal to the original length of the
side, and if one draws the base [of the triangle thus formed], this latter forms a right angle
with the original base.

For example, let the isosceles triangle be ABG, the lines AB, BG being equal to each
other. The straight line AB is extended up to Z such that BZ is equal to one of the two lines
AB, BG; the line GZ is drawn [Fig. IV-1-4]. I say that then the angle AGZ is right.

The proof: Divide the line AG into two halves at the point D, and draw the line DB. It
results from the eleventh proposition of the first book [of Euclid] that the angle ADB is
right, and the same for the angle GDB. Extend the straight line DB to E, such that the line
BE is equal to the line DB, and draw the line EZ. Since the two lines EB, BZ are equal,
respectively, to the two lines DB, BA, that is, the line DB to the line BE, and the line AB to
the line BZ, and since the two vertical angles [at B], DBA, EBZ are equal, then the base
EZ [of triangle EBZ] is equal to the base AD [of triangle ABD], and the remaining angles
[of the first triangle] are equal to the remaining angles [of the second triangle], each to its
corresponding one. As a consequence, the angle BEZ is equal to the angle ADB, and the
angle ADB is right, so the angle BEZ is right. Since the line EZ is equal to the line DA,
which is equal to the line GD, [then] the line EZ is equal to the line GD.

I say that the line GZ is [also] equal to the line DE. The proof is that it cannot be
otherwise; if it were otherwise, then the line GZ would either be greater than the line DE
or would be less than this line. Suppose, first, that the line GZ is greater—if this were
possible—and divide the line GZ into two halves at the point H. Since the line GZ is
greater than the line DE, the line GH, half of the line GZ, is greater than the line DB, half
of the line DE. Also, in the same way, it becomes clear that the line HZ is greater than
the line BE. Extend BD in a straight line to L so that BL is equal to GH, and extend BE
in a straight line to K so that the line BK is equal to the line HZ. Since the two lines GH,
HZ are equal to each other, the two lines LB, BK are equal to each other. Also, since the
line LB is equal to the line GH and the line BK is equal to the line HZ, therefore the entire
line LK is equal to the entire line GZ. And since the line BL is equal to the line BK, and
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the line BD is equal to the line BE, it follows that the line DL is equal to the line EK. The
two lines LD, DG are thus equal to the lines KE, EZ, each to its corresponding one, that
is, the line LD to the line KE, and the line DG to the line EZ; and the right angle LDG is
equal to the right angle KEZ; as a consequence, the base GL [of triangle GLD] is equal to
the base ZK [of triangle ZKE]. Therefore, the figure LGZK is a quadrilateral of which the
opposite sides are equal in pairs; therefore the opposite angles are equal, the angle KLG
being equal to the angle KZG, and the angle LKZ being equal to the angle LGZ. As the
angle GDB, exterior to the triangle GLD, is right, the interior angle GLD [of the triangle] is
less than a right angle; in the same manner, it is shown that the angle ZKE is less than
a right angle. Since the two angles GLK, LKZ are acute, the two opposite angles [in the
quadrilateral] are [also] acute. Thus, the quadrilateral GLKZ has all its angles acute, and
this is false. As a consequence, the line GZ is not greater than the line DE.

The proof that line GZ cannot be less than line DE is similar.
It has already been demonstrated that [GZ] is not greater than [DE]. As a consequence,

the line GZ is equal to the line DE. But the line GD is also equal to the line ZE. The figure
DEZG is therefore a quadrilateral of which the opposite sides, taken in pairs, are equal;
the opposite angles are therefore [also] equal. But the angle DEZ is right, and therefore
the angle DGZ is right. QED

[Lemma 5:] In every right triangle, if the side opposite the right angle is divided into two
halves and a straight line is drawn from the point of division to the right angle, then the
straight line which results is equal to each of the parts of the divided line.

Let ABD be a right triangle with angle ADB the right angle. The line AB is divided into
two halves at the point G and the straight line GD is drawn. I say that the line GD is equal
to each of the two lines AG, GB [Fig. IV-1-5].

The proof is that it cannot be otherwise. We suppose that the line GD were either
greater than each of the two lines AG, GB or that it were smaller. To begin, suppose that
it is greater, if that were possible. A line is cut off along the line GD equal to each of
the two lines AG, GB, say, GE, and the two straight lines AE, EB are drawn. Since the
triangle AGE is isosceles, if one of the two sides, suppose the line AG, is extended from
the intersection of the two sides [GE, GA] an equal length, to give the line GB, and the
straight line EB is drawn, then the angle AEB is right [lemma 4]; but the angle ADB is
[also] right. One has thus constructed on one of the sides of the triangle ADB, that is,
the line AB, two straight lines drawn from the extremities, meeting in the interior of the
triangle and subtending an angle equal to the angle subtended by the two other sides [of
triangle ADB]—the right angle ADB being equal to the right angle AEB—and this is false
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[Elements I.21]. By consequence, the line GD is not greater than each of the two lines
AG, GB.

The proof that line GD is not smaller than the lines AG, GB is similar.
But it has already been demonstrated that [GD] is not greater than each of the lines

AG, GB. So the line GD is equal to each of the lines AG, GB. QED
[Lemma 6:] In every right triangle, the non-right angles are together equal to a right

angle.
Let the right triangle be ABG, of which the angle ABG is right. I say that the two angles

BAG, BGA, taken together, are equal to the angle ABG, which is right [Fig. IV-1-6].
The proof: AG is divided into two halves at the point D, and the straight line DB is

drawn. Then the line DB is equal to each of the two lines DA, DG; the triangle ADB is
therefore isosceles. Also, the triangle BDG is isosceles. Thus, the angle DBG is equal to
the angle DGB, and the angle DBA is equal to the angle DAB. Therefore, the two angles
DAB, DGB, taken together, are equal to the angle ABG, which is right. QED

[Lemma 7:] In every rectilinear triangle, the three angles [together] are equal to two
right angles.

The proof: It cannot but be otherwise that either [the triangle] is a right triangle or it is
not a right triangle. If it is a right triangle, the property is proved by virtue of the previous
proposition. So assume that it is not a right triangle; I claim that the three angles are [also]
equal to two right angles.

Example: Let the non-right triangle be ABG. The perpendicular is drawn from the point
A to the base BG, supposed unlimited; let the perpendicular be AD. If the perpendicular
falls on the line BG between the points B and G, which is the case in the first figure [in
Fig. IV-1-7], it is clear that the three angles of the triangle BAG are [together] equal to two
right angles.

The proof: Since the triangle ADG is a right triangle, the two angles DAG, DGA are
together equal to a right angle; it is likewise established that the two angles DAB, DBA
are [together] equal to a right angle. The three angles of the triangle BAG together are
therefore equal to two right angles.

Similarly, suppose that the perpendicular AD falls outside of triangle ABG, which is the
case in the second figure [in Fig. IV-1-7]. I claim that the three angles of triangle BGA are
[together] equal to two right angles. The proof: Since the triangle ADB is a right triangle,
the two angles DAB, DBA are together equal to a right angle; but the angle DAB is itself
equal to the [sum of] the two angles DAG, GAB, and the three angles DAG, GAB, DBA
are therefore [together] equal to a right angle. Also, since the triangle ADG is a right
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Fig. IV-1-8.

triangle, the two angles DAG, AGD are equal to a right angle. The three angles DAG,
GAB, ABG being [together] equal to the two angles DAG, AGD, the common angle DAG
is subtracted; the angles GAB, ABG which remain are [together] equal to the remaining
angle AGD. The angle AGB is added [to both]. Then the two angles AGB, AGD [together]
are equal to the three angles AGB, GAB, ABG [together]. But the two angles AGB, AGD
[together] are equal to two right angles; the three angles of triangle ABG are therefore
also equal to two right angles.

It has thus been demonstrated that the three angles of any rectilinear triangle are
equal to two right angles, but this conclusion is not required for the result that we
seek.

[Lemma 8:] In every right triangle, if one of the sides containing the right angle is
extended by a length equal to itself, and if the side opposite the right angle is extended
in the same direction a length equal to itself, and if a straight line is drawn connecting the
extremities of the lines thus obtained, then this line makes a right angle with the extension
of the line containing the right angle.

Let ABG be the triangle, in which the angle ABG is right. The line AB is extended to
D, so that the line BD is equal to the line AB. The line AG is extended in a straight line to
E, the line GE being equal to the line AG, and the straight line DE is drawn [Fig. IV-1-8].
I say that the angle ADE is right.

The proof: Draw the straight line GD. Since the right angle ABG is equal to the right
angle GBD, and the line AB is equal to the line BD, and the line BG is common [to
the two triangles ABG, GBD], then the base GD is equal to the base AG. The triangle
AGD is therefore isosceles, and one of its equal sides, the line AG, [has been extended]
a length equal to itself, that is, GE. As a consequence [Lemma 4], the angle ADE is
right. QED
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[Lemma 9:] If a straight line falls on two straight lines and forms on one side two interior
angles that together are less than two right angles, and if from the vertex of one of the
angles a perpendicular is drawn to the second line, then the perpendicular forms, with the
other line, an acute angle on the side where the two interior angles are less than two right
angles.

Let the two straight lines be supposed unlimited, the lines AB, GE, and, falling on them,
the straight line ZD forms [with these] two angles BZD, ZDE, [together] less than two right
angles. I claim that if from point Z a perpendicular ZH is drawn to the line GE, supposed
unlimited, the obtained angle HZB is acute, that is, the angle that is determined on the
side on which the two interior angles are less than two right angles [Fig. IV-1-9]. Similarly,
if from point D a perpendicular DT is drawn to the line AB, supposed infinite, the angle
TDE will be acute.

The proof: Since the three angles of triangle ZHD are equal to two right angles, and
since the two angles ZDH, ZDE are also equal to two right angles, the angle ZDE is equal
to the two angles ZHD, HZD [taken together]. The angle BZD is added [to both]. The two
angles BZD, ZDE are therefore equal to the three angles ZHD, HZD, BZD. But the two
angles ZDE, BZD are [together] less than two right angles; thus the three angles ZHD,
HZD, BZD are [together] less than two right angles. But the angle ZHD is right. It follows
that the two angles HZD, BZD are [together] less than a right angle, so the angle HZB is
acute.

Similarly, it is proved that the angle TDE is acute. In fact, the angle BTD, which is right,
is equal to the two angles TZD, TDZ, since the latter, taken together, form a right angle.
The angle TDE is added [to both]. The two angles BTD, TDE are therefore equal to the
three angles TZD, ZDT, TDE. But the three angles TZD, ZDT, TDE are less than two right
angles. Therefore the two angles BTD, TDE are less than two right angles. But the angle
BTD is right; so the remaining angle TDE is less than a right angle. QED

[Proof of the postulate of parallels:]
If a straight line falls on two straight lines, forming on one side two interior angles [together]
less than two right angles, then the two straight lines, if they are prolonged indefinitely on
the same side, will meet.

Let the two straight lines be AB, GD and, falling on them, the straight line AE, forming
two angles BAE, AED [together] less than two right angles. I claim that the two lines AB,
GD, if they are prolonged indefinitely in the direction of B, D, will meet [Fig. IV-1-10].
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The proof: The perpendicular is constructed from the point A to the line GD, supposed
unlimited; this is the line AZ. It is clear from that which precedes that the angle ZAB is
acute [Lemma 9]. A point, say, the point H, is marked anywhere on the straight line AB,
and from this point the perpendicular to the straight line AZ is constructed; this is the line
HT. Since the angle ZAB is acute, it is clear that the point T falls on the line AZ, extended
on the side of Z. It has been established that the line AT, if multiplied sufficiently many
times, will be greater than the line AZ. The line TK is chosen to be the same length as the
line AT, and the line KL the same length as the line AK. When this is done several times,
this [line so constructed] will be greater than the line AZ.

Suppose that the line AL is greater than the line AZ. Since the angle ATH is right, it is
clear that, if the straight line AH is prolonged in a straight line an equal length, say, HM,
and in the same manner the straight line AT, giving the line TK, then the line that joins
the point K and the point M, that is, the line KM, meets the line AK in a right angle, as
has already been proved [Lemma 8]. Similarly, it is clear that, if the straight line AM is
prolonged in a straight line an equal length, giving the line MN, and the straight line NL is
drawn, then the angle ALN is right.

But since the angle AZD is right, the angle LZD is also right; the two lines ZD, LN are
therefore parallel on the side [of the triangle ALN; Elements I.28]. Since the straight line
ZD is interior to the triangle ALN, and the triangle ALN is finite, it is therefore possible to
prolong the straight line ZD continuously in a straight line, such that it exits the triangle
ALN; but it is not possible that the straight line ZD, prolonged indefinitely, exits between
the two points L and N, since the two lines ZD, LN, which are parallel, would meet, and
this is false. I say also that the straight line ZE may not exit between the two points L
and A; if this were possible, then it would also be that the line ZD would cut the line AL
at O, and in this case the two straight lines ZO, ZDS would encompass a surface, and
this is false. This being so, it remains only that the straight line ZD, when it is prolonged
indefinitely, must exit the triangle ALN between the two points A and N. As a consequence,
the straight line ZD meets the line AN. QED

2. LEVI BEN GERSHON, TREATISE ON GEOMETRY

The Treatise on Geometry was probably written shortly after the commentary on the
Elements. Levi wanted to construct geometry on a stronger foundation than Euclid’s.
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Unfortunately, the only extant manuscript of this work contains just the first 24 definitions
and hypotheses. We present here the twenty-third of these, which distinguishes between
the necessary boundedness of actual lines in the world and the indefinite extensibility of
mathematical lines.3

23. I say that it is possible to prolong a limited straight line in a straight line,
continuously, without any determined limit. In fact, the line is always augmentable while
still being limited.

This hypothesis has been subjected to doubt. In fact, the Philosopher [Aristotle]
contradicts it in his celebrated book On Physics. He has explained the impossibility of
supposing that a line can be greater than the line that is the greatest that is contained in
the universe, that is, the world in its totality. In fact, a line only has existence in a body.
Since this premise is very necessary for the geometer, it is appropriate for us to investigate
the doubt that befalls it. We say that the aspect through which the Philosopher has
contradicted this premise is the necessity for a body to be finite, as has been explained in
the place mentioned; but since a line has existence only in a body, it is necessary that the
magnitude of the line be limited, that is to say, it is impossible that it can be greater than
the straight line contained in the universe, that is, the world in its totality.

This being so, we should investigate from what aspect it is necessary for a body to be
finite and limited, that is, not greater than the body of the world. We say that it is manifest
that this is a necessity for a body inasmuch as it is a physical body, as has been proven
there. However, the geometer supposes that the line is unlimited from the point of view of
augmentation, in the sense that one may always add to that which has been added: this
does not relate to a line as it is in a physical body, but inasmuch as it is in a mathematical
body. From this aspect, the impossibility of the absence of a determined limit in the body
has not been demonstrated from it [the body] being always finite. Indeed, the geometer
poses this hypothesis from the perspective that it is possible and not from the perspective
that it is impossible. As a consequence, in this perspective, no contradiction follows from
this premise.

With this premise posited, the geometer recognizes that it is impossible for any
magnitude to be infinite, since it exists in actuality and must necessarily be limited. And
we claim that this does not contradict the premise that we have mentioned: in fact, what
is necessary for a magnitude inasmuch as it has magnitude—and it is this aspect that
the geometer considers—is that it not be infinite, but not that it not be greater than
the world. Although we acknowledge that the line is always augmentable indefinitely, it
does not necessarily follow that the line is infinite in magnitude. In fact, the line, whatever
increments it receives, is finite, and that is always so. As for the absence of a limit that we
posit with respect to it—it relates to the possibility of augmenting and does not mean that
the line is [actually] infinite in magnitude.

3The source of the distinction between an unacceptable actual infinity and a permissible indefinite infinity goes
back to Aristotle, who is Levi’s obvious reference. A possibly related discussion in a mathematical context can be
found in Ibn al Haytham’s interpretations of Euclid. His concern is the tension between the finite lines that our
imagination can contain, and the indefinitely extended lines required by Euclid’s postulates [Sude, 1974, 49–55,
88–90].
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3. QALONYMOS BEN QALONYMOS, ON POLYHEDRA

Qalonymos ben Qalonymos (see section II-5) translated into Hebrew an anonymous
Arabic manuscript on polyhedra early in the fourteenth century, a manuscript extending
“Book XIV” of Euclid’s Elements, written by Hypsicles in the second century BCE. Muhyı̄
al-Dı̄n al-Maghribı̄ used this same manuscript to produce a new Arabic version of the same
treatise.

It is not known whether the original from which each borrowed was an Arabic original
or a translation from a Greek original. In any case, although the Qalonymos and the
al-Maghribı̄ versions are similar, neither is a copy of the other. They have most of their
theorems in common, but the ordering and some of the proofs are different. A substantial part
of al-Maghribı̄’s version is in section IV-5 in Chapter 3. Here we present two propositions
from Qalonymos’s version that are not included in that material (although the propositions do
occur in the al-Maghribı̄ version). We have chosen to include these in part to demonstrate that
Qalonymos believed that there would be a Hebrew-reading audience for these rather advanced
geometrical ideas.4

[Proposition 18]: We wish to show that the ratio of the [surface] area of the cube to the
[surface] area of the icosahedron is as the ratio of the square of the side of the pentagon5

to [three] and a third times the equilateral triangle whose side equals the root of three
times the square on a decagon of the circle that circumscribes the pentagon.

For example, we take AB as the side of the hexagon6 and divide it in mean and extreme
ratio at C. Let D be equal in power [mah. ziq]7 to AB and AC [i.e., the square on D is equal
to the sum of the squares on AB and AC], so D is the side of the pentagon.8 Let E be
equal in power to AB and BC, that is, the root of three times the square of AC, where AC
is the side of the decagon.9 I say that the ratio of the [surface] area of the cube to the
[surface] area of the icosahedron equals the ratio of the square of D to three and a third
times the equilateral triangle on E. Its proof is: it has already been shown in the preceding
proposition that the ratio of the edge of the cube to the edge of the icosahedron is as D
is to E, and the ratio of the [square on the] edge of the cube to the square on the edge
of the icosahedron is as the square on D to the square on E.10 Inverting, the ratio of the
square [on the edge] of the cube to the square on D is as the ratio of the square on the
edge of the icosahedron to the square on E. [For any two lines, the ratio of the square on
the first line to twice the triangle on that line is as the ratio of the square on the second
line to twice the triangle on that line.] So the square on D is to twice the triangle on D as
the square on E is to twice the triangle on E. Therefore, the square [on the edge] of the
cube is to the square on D as the square on the edge of the icosahedron is to the square
on E. And [the square on the edge of the cube] is to twice the triangle on D, which is twice

4For more details on the two manuscripts and on another Hebrew version, see [Langermann, 2014].
5The “pentagon” is the pentagon formed by the bases of five triangles of the icosahedron that have a common

vertex. Thus the side of the pentagon is an edge of the icosahedron.
6The “hexagon” is the hexagon inscribed in the circle that circumscribes the pentagon.
7The Hebrew word mah. ziq, translated here as “equal in power,” is a translation of an analogous Arabic word and

also of the Greeek dunamene.
8Elements, XIII.9 and XIII.10.
9Elements, XIII.4.
10This is proposition 7 of Elements XIV, the work of Hypsicles; see [Montelle, 2014].
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the face of the icosahedron, as the square on D, which is the edge of the icosahedron, to
twice the triangle on E. The ratio of six times the square of the [edge of the] cube, which
is the [surface] area of the cube, to twelve times the face of the icosahedron, which is
three fifths of the [surface] area of the icosahedron, is equal to the ratio of the face of the
cube to twice the face of the icosahedron, which is the same as the ratio of the square on
D to twice the triangle on E. The [ratio of the] surface area of the cube to three-fifths of
the surface area of the icosahedron is equal to the ratio [of the square on D] to twice the
triangle on E. The ratio of three-fifths the [surface] area of the icosahedron to the surface
area of the icosahedron is equal to the ratio of twice the triangle on E to three and one-
third the triangle on E. The complete ratio of the surface area of the cube to the surface
area of the icosahedron is equal to the ratio of the square on D to three and one-third the
equilateral triangle on E.

It is clear from what we have described that the ratio of three-fifths of the surface area
of the icosahedron to the surface area of the cube is the same as the ratio of twice the
triangle on E to the square on D.

[Proposition 19]: We wish to show that the ratio of the [surface] area of the icosahedron
to the [surface] area of the octahedron is equal to the ratio of five times the square on the
side of the decagon of the circle to the square on the side of the pentagon.

Let A be the side of the pentagon and B the side of the decagon. I say that the ratio of
the [surface] area of the icosahedron to the [surface] area of the octahedron is equal to
the ratio of five times the square on B to the square on A. Its proof is, we take C so that its
square is three times the square on B. We have already shown that the ratio of three-fifths
of the [surface] area of the icosahedron to the [surface] area of the cube is equal to [the
ratio of] twice the triangle on C to the square on A. We have already said that the ratio of
the [surface] area of the cube to the [surface] area of the octahedron is equal to the ratio
of the square on A to twice the triangle on A, for we have already shown in the preceding
that the ratio of the [surface] area of the cube to the [surface] area of the octahedron is
equal to the ratio of the side of any equilateral triangle to its altitude,11 which is like the
ratio of the square [of its side] to twice its triangle. The ratio of three-fifths of the [surface]
area of the icosahedron to the [surface] area of the cube is equal to the ratio of twice the
triangle on C to the square on A. The ratio of the surface area of the cube to the [surface]
area of the octahedron is equal to the ratio of the square on A to twice the triangle [on A].
In the equality of the ratio, the ratio of three-fifths of the [surface] area of the icosahedron
to the [surface] area of the octahedron is equal to the ratio of twice the triangle on C
to twice the triangle on A, which in turn is equal to the ratio of the triangle on C to the
triangle on A. The ratio of the triangle on C to the triangle on A is equal to [the ratio of the
square on C to the square on A and thus to the ratio of three times the square on B to]
the square on A. The ratio of three-fifths of the [surface] area of the icosahedron to the
[surface] area of the octahedron is as the square on C, which is the same as three times
the square on B, to the square on A. The ratio of three-fifths of the [surface] area of the
icosahedron to the [surface] area of the entire icosahedron is equal to the ratio of three
times the square on B to five times the square on B. In the equality of the ratio, the ratio of

11See proposition 12 in the section IV-5 of Chapter 3.
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the [surface area of the] icosahedron to the [surface] area of the octahedron is five times
the square on B to the square on A.

4. IMMANUEL BEN JACOB BONFILS, MEASUREMENT OF THE CIRCLE

This text by Immanuel Bonfils (see section I-3) is a variation on Archimedes’s proof
for the formula of the area of a circle. It is embedded in a text concerning an evaluation
of π (greater than 67,801/21,600 using a 3072-gon), isoperimetric theorems for the circle
and sphere, and root extraction. The proof circumvents the construction of a sequence of
circumscribed/circumscribing polygons whose areas are arbitrarily close to a given circle;
instead it assumes the existence of a circle with a given area and relies on the constructability
of a polygon in the ring between any two concentric circles. According to [Lévy, 2012],
this proof builds on (and simplifies) the ninth-century proof by Banū Mūsā, which relied
on constructing a polygon whose circumference is between a given segment and the
circumference of a given circle.

Any circle is equal to the product [lit. area] resulting from [the multiplication of] half its
diameter by half its circumference. This means that we think of half the circle as if it were
a straight line.

Let there be a circle ABGD whose center is E, and let half its diameter be EB and half
its circumference arc BGD. I say that circle ABGD equals the product resulting from the
multiplication of line EB by arc BGD [Fig. IV-4-1].

Proof: If it were not so, let us say that the product resulting from [the multiplication] of
line EB by arc BGD would equal a circle either greater or smaller than the circle ABGD.
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Let us consider first the greater, that is, circle ZHTL, drawn around the center E. Inside
the circle ZHTL let us construct a [regular] polygon with equal angles not touching circle
ABGD, according to what has been established by [proposition] 13 of [Book] 12 of Euclid
[Elements], and this figure is ZHTL.

Let us draw EM, which is the perpendicular to line HT. It is evident that the product
resulting from [multiplying] EM by MH is equal to [the area of] triangle EHT. This holds
for all the triangles constructed in this figure when we draw lines from the center to
the vertices of the polygon. Now MH is half HT. Therefore the product resulting from
[multiplying] EM by half the perimeter of the polygonal figure equals the entire [area of
the] figure ZHTL. But EM is greater than EB, since the [polygonal] figure does not touch
the circle [ABGD], and since half the perimeter of figure ZHTL is greater than half the
circumference of circle ABGD. Therefore the figure ZHTL is greater than the product
resulting from [multiplying] EB by arc BGD, which is half the circumference of circle ABGD.

We had posited that [the area of the] circle ZHTL equals the product resulting from
[multiplying] the line EB by arc BGD. Therefore the figure ZHTL is greater than the circle
ZHTL. This [however] is false, since the circle ZHTL circumscribes the figure ZHTL and
it exceeds the [polygonal] figure with all the [sectors constituted by the] arcs [subtended]
by the sides [of the polygon]. Therefore the product resulting from [multiplying] EB by arc
BGD is not equal to a circle greater than circle ABGD.

The proof of the other alternative is analogous, and we omit it.

5. SOLOMON BEN ISAAC, ON THE HYPERBOLA AND ITS ASYMPTOTE

In his Guide to the Perplexed I 73, Maimonides claims that some things that are impossible
to imagine are nevertheless true. As an example he gives the hyperbola and its asymptote:
these lines approach each other indefinitely but never meet.12 This argument, which is not
original to Maimonides, has a long history in the Latin, Arabic, and Hebrew literature
[Freudenthal, 1988].

Maimonides’s comment inspired several Hebrew investigations of asymptotes. The text
quoted here belongs to a Hebrew transmission, which, according to [Lévy, 1989a,b], stems
from the Arabic work of al-T. ūsı̄. Its proof that a right angle hyperbola approaches its
asymptote is clear and concise, even if this manuscript leaves a small gap: it shows that the
hyperbola and the asymptote come “much closer” as they extend, but fails to quantify this
relation, and therefore does not formally show that they do come arbitrarily close. The means
to fill the gap, however, are easily accessible to anyone who can follow the text and formulate
the gap in a precise manner.

This text is attributed to Solomon ben Isaac, whose identity has not been traced. The
manuscript, which seems to be a sixteenth-century Italian copy written during Solomon’s life,

12“Know that there are things that a man, if he considers them with his imagination, is unable to represent to
himself in any respect, but finds that it is as impossible to imagine them as it is impossible for two contraries to agree.
. . . It has been made clear in the second book of the Conic Sections that two lines between which there is a certain
distance at the outset, may go forth in such a way that the farther they go, this distance diminishes and they come
nearer to one another, but without it ever being possible for them to meet even if they are drawn forth to infinity, and
even though they come nearer to one another the farther they go. This cannot be imagined and can in no way enter
within the net of imagination. Of these two lines, one is straight and the other curved, as has been made clear there in
the above-mentioned work” [Maimonides, 1963, vol. I, §73].
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dates his work to around 1500 [Lévy, 1989a]. Among the other treatments of this problem
that belong to the same tradition we should mention the text attributed (falsely, according to
[Lévy, 1989b]) to Simon Mot.ot. [Sacerdote, 1893–1894].

In the text here, we omit the preliminary propositions cited from the Elements: the angles of
a triangle sum to two right angles; an isosceles triangle has equal base angles and vice versa;
an isosceles triangle with a right angle has two half-right angles; in a right angle triangle the
height is a mean proportional between the parts of the base as cut by the height; if we divide
a line segment, the square on the whole segment equals the squares of the parts and twice the
rectangle contained by the parts; and the square built on half a line segment with an addition
equals the square on half the line segment and the rectangle contained by the addition and the
original segment with the addition.

Given a right angle triangle with two equal sides surrounding that angle, if you set one
of those sides erect, and turn the triangle around until it returns to its starting position,
then the resulting figure is called a cone with circular base. If you cut this figure by a
surface parallel to the base, there will be a smaller circle at the intersection.

An example: a triangle ABC of that form, with right angle ACB and the side AC equal
to the side CB [Fig. IV-5-1]. When you set the side AC erect and turn the triangle ABC
until the point B returns to its place, a figure is formed whose base is a circle, and the
entire figure is similar to a round cylinder ending at the top at point A. This figure is called
a cone, which is what we wanted to explain.

For any cone cut by a plane through its axis (which is the height of the initial triangle that
you turned), at the intersection there would be a right angle triangle, whose right angle is
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the one at the top of the cone, and at its base there would be half a circle with its diameter.
If we set this [solid] figure on the intersection, its base will be the aforementioned triangle,
the half circle will rise up high, and the diameter of the half circle will be at the bottom,
forming the chord of the right angle of the aforementioned triangle. All this is explained in
the figure [Fig. IV-5-2], which is what we wanted to explain.

· · ·

If one of the sides of the half cone that surround the right angle is extended, and we
draw from one of its points a line parallel to the axis of the figure, going into the triangle
(which is the base of the half cone), and touching the diameter of the half circle (which
is the chord of the right angle of the base triangle), and from the point of the diameter
touched by the aforementioned line you draw a height touching the circumference, and
you cut the cone by a plane through the aforementioned height and line, then the plane
will form a curved line on the surface of the cone.
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Let the base of the half cone be the triangle marked ABC, and the half circle erected
on it BEIC with its diameter BDGC [Fig. IV-5-2]. Having extended the side BA out of the
triangle to the point F, and drawn from the point F a straight line FHG parallel to the axis
AD, and drawn from the point G, where the line touches the diameter, a height GI touching
the circumference, then when we cut the half cone by a plane through the height GI and
the line GH, this plane forms a curved line on the surface of the half cone.

To make things clearer, I form a figure consisting of the entire line FHG and the height
GI together with the plane cutting the figure and the following additions [Fig. IV-5-3]. We
bisect the line FH at point J, and set on the point H a height HK equal to the line JH, which
is half the bisected line. We draw a line from J to K and extend it to M. We also extend the
height GI as far as this line at point L.

Concerning the former figure [Fig. IV-5-2], we say that the line BG on the diameter
equals the line GF of the triangle BGF. Moreover, the line GC that remains on the diameter
equals the line HG of the triangle HGC, and the height GI is the mean proportional
between the two parts of the diameter, BG and GC.13 The two lines BG and GC equal
the two lines GF and GH, respectively. Therefore the square of the height GI is equal
to the area surrounded by GF and GH. In the latter figure [Fig. IV-5-3], the line FH has
already been bisected at point J and added to the line GH. Therefore the square of JG
equals the area surrounded by GF and GH and the square of JH.14. Now the height line
GL equals the line JG. Therefore the square of GL equals the area surrounded by the

13This fact was included in Solomon’s list of preliminary Euclidean results.
14This fact was included in Solomon’s list of preliminary Euclidean results.
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two lines GF and GH and the square of JH. But the square of GI has already been said
to equal the area surrounded by the two lines GF and GH. Therefore the square of GL
exceeds the square of GI by the square of JH.15

Now if you extend the entire diagram so that the line FJHG reaches the point P and let
the height on P be PON, the former proofs show that the square of PN exceeds square
of PO by the square of JH. And if you extend the entire diagram further, so that FJHGP
reaches R and let the height on R be RQM, the former proofs also show that the square
of RM exceeds the square of RQ by the square of JH. And so ever on, even if you
extend the diagram indefinitely, one square will exceed the other by the square of JH.
Therefore they [the hyperbola and asymptote] cannot meet, because if this were possible,
then they [the height to the cone and the height to the plane] would be equal, and the
square of the one would not exceed the square of the other. But we have explained that
the one exceeds the other by the square of JH. Therefore it is false that they ever meet.

The demonstration that as they [the hyperbola and the asymptote] extend they grow
nearer, and that their distance diminishes with respect to the initial distance, which is the
height JH, is explained by what we have already explained in the previous diagrams before
the extension, namely, that the square of GL exceeds the square of GI by the square of
JH. Let us complete the square to render this visible.

Let the square of GI be the square marked ABCD [Fig. IV-5-4]. The three comple-
menting areas [which complete the square of GI to the square of GL, namely, the three
rectangles forming the gnomon ABGILC] equal the square of JH. Thus JH is much greater
than IL. But HK has already been said to equal JH. Therefore the line KH is much larger
than the line IL. And so the lines [the hyperbola and asymptote] grow much closer.

15GI2 = GB · GC = GF · GH; GL2 = JG2 = GF · GH + JH2. Therefore, GL2 = GI2 + JH2.
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Extending the diagram as far as P and the height PON, we have already explained
that the square of PN exceeds the square of PO by the square of JH. When we complete
the diagram [to form a square], let the square of PO be the square marked ABCD
[Fig. IV-5-5]. The three complementing areas with respect to the square of PN equal
the square of JH. Since the square of PN is much wider and longer than the square of
GL, and the three respective complementing areas equal the square of JH, therefore the
line NO is much smaller than the line IL, and the lines [the hyperbola and asymptote]
grow closer. In the same way it is explained that they grow closer as you extend the entire
diagram until it reaches the point R, and so on indefinitely.

Therefore two lines are drawn, one of which is the straight line JLNM and the other is
the curved line HIOQ. At their inception they had a certain distance, and as they extend
they grow nearer. They cannot ever meet even if they are extended indefinitely, which is
what we wanted to explain.

6. ABNER OF BURGOS (ALFONSO DI VALLADOLID), SEFER MEYASHER ↪AQOV (BOOK OF

THE RECTIFYING OF THE CURVED)

This section was prepared by Avinoam Baraness.16

Abner of Burgos (1270–1348) was a Jewish scholar from Castile, who converted to Chris-
tianity and was known after his conversion as Alfonso di Valladolid. After his conversion,
Alfonso became engaged in anti-Jewish activity: polemical writings, public disputations, and

16Avinoam Baraness expresses his deepest gratitude to Professor Ruth Glasner for significant encouragement and
assistance during the writing process. However, he notes that the section on the quadrature of the lune (prop. 23) is
due entirely to Tzvi Langermann, as stated in the list of sources at the end of this chapter.
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even inciting the authorities against the Jews.17 Alfonso was well versed in the Bible and
the Talmud, and also in Greek and Arabic philosophy. His philosophical work, the New
Philosophy, is lost. His extant works are mostly polemical, in Castilian translation. Only one
book and a few letters were preserved in the original Hebrew.

The Hebrew mathematical treatise Sefer Meyasher ↪Aqov18 by Alfonso is extant in the
single manuscript [British Library Add 26984].19 [Gluskina, 1983] identified the author
“Alfonso” as Abner de Burgos—an identification reconfirmed by [Freudenthal, 2005]. Sefer
Meyasher ↪Aqov is very different from the rest of his works known to us. The stated aim of
the book is “to inquire whether there possibly exists a rectilinear area equal to a circular area
truly, neither by way of approximation as earlier scholars suggested.” In the book Alfonso
was concerned with the three famous geometrical problems of antiquity, the measurement of
curves, plane figures, and solids, and methods for comparing areas circumscribed by mixed
straight and curved lines. The treatise contains five chapters, of which the first four prepare
the background for the final (and lost) one, where the author was to achieve his goals. The first
two chapters offer a historical and philosophical introduction with special attention to the role
of motion in geometry. The third chapter consists of 33 geometrical propositions, which are
claimed to be “useful for this discipline.” Propositions 2–9 of the third chapter are missing,
and the text is interrupted at the beginning of the fourth chapter. The original manuscript
includes only a few simplistic diagrams for the second chapter.

Whereas Alfonso’s philosophical writing sometimes lack clarity and sharpness, the
mathematical sections are better organized. The text presented here is from the third chapter,
whose content is purely mathematical. Each proposition of this chapter follows the formal
Euclidean pattern. It is, however, difficult to point out the organizing principle underlying
the chapter as a whole. The propositions deal with a wide range of topics: comparing areas,
theorems connecting the length of some segments in polygons (including Ptolemy’s theorem
on inscribed quadrilaterals), two generalizations of the Pythagorean theorem, characters of
compound ratios (in anachronistic terms: products of ratios), two theorems on magnitudes
divided into n parts, pre-trigonometric theorems, and some of the classical problems of
antiquity. In this selection, we present Alfonso’s quadrature of the lune and his doubling of
the cube by means of a conchoid.

The quadrature of the lune (proposition 23)
Since the goal of Alfonso’s treatise was the quadrature of the circle, one need not be surprised
to find there a treatment of the quadrature of the lune. But Alfonso’s introduction makes it
clear that this quadrature only gives us reason to believe (rather than a proof) that squaring
the circle should be possible. We bring here only the second construction that Alfonso

17For a detailed documentation of his life and works see [Baer, 1961–1966] and [Sadik, 2012]. Although Abner
and Levi ben Gershon were contemporaries, there is no evidence that either was aware of the other.

18The Rectifying of the Curved, alluding to Isaiah, 40:4 “and the crooked shall be made straight.” Clearly, Abner
understands the Hebrew in this sense, which is the King James translation, rather than in the sense of the Jewish
Publication Society translation.

19The manuscript has no colophon and contains many blunders and mistakes. A scientific edition of this
manuscript was published by [Gluskina, 1983]. It includes the original text in Hebrew, a Russian translation, and
a commentary, along with mathematical remarks by the historian of mathematics B. A. Rosenfeld. Baraness and
Glasner are preparing an English translation of the text with mathematical commentary.
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derives from Hippocrates, because its treatment is a little more original. The commentary
and translation for this proposition are adapted from [Langermann, 1996].

It is particularly interesting that Alfonso knows quite well that Hippocrates is the author of
the quadrature of the lune. [Clagett, 1964–1984, III, pp. 1317–1318] has pointed out that “in
none of the many manuscripts of the medieval Quadratura circuli per lunulas was Hippocrates
named as the author.” Nor was his name mentioned by Ibn al-Haytham, the only Arabic
authority whose writings on the subject have survived, albeit partially [Suter, 1986].

This construction is essentially the same as Hippocrates’s second quadrature as reported
by Eudemus [Heath, 1981, 192–193]. However, the construction of Alfonso is simplified
considerably. Hippocrates’s method has in fact two parts, both of which involve constructing
trapezia that are then circumscribed by circles, which form the outer circumference of the
lune; the second part in particular has drawn much attention from historians, because it
contains one of the earliest known neusis constructions. In contrast, Alfonso displays but
a single step, and, using Ptolemy’s theorem (as Gluskina points out in her commentary),
proves that his construction is in fact the trapezium described by Hippocrates. Now we have
no evidence that this theorem was known before the time of Ptolemy (second century CE;
see [Toomer, 1984, pp. 50–51]), so it seems unlikely that it was part of Hippocrates’s own
procedure, which was then only summarized by Eudemus; nor is it invoked by Simplicius in
his discussion.

Proposition 23: There is yet another figure equal to a rectilinear area. We take straight
line AB such that when multiplied by itself it will be equal to three times line BC multiplied
by itself.20 We take line [AC] multiplied by itself to be equal to [the sum of] line BC multiplied
by itself together with the product of AB with CB. With these three lines we construct
triangle ABC, as has been explained. On it we circumscribe [circle] ABCD with center E
[Fig. IV-6-1]. Since line AC is greater than chord CB, arc ADC is greater than arc CB. From
the latter we mark off arc AD equal to arc BC. We join lines AD, DC, EA, ED, EC, EB, BD.

Now the sides of triangle ABC are equal to the sides of triangle ADB, respectively.
Moreover, AC and BD are equal to each other. Since ABCD is a quadrilateral inscribed
within a circle, the product of lines AC and BD, in other words AC multiplied by itself,
is equal to the product of AD and CB—which is [the same as] CB multiplied by itself—
together with the product of AB with either CB or CD. Therefore, CB is equal to CD.21

Accordingly, AB multiplied by itself is equal to the sum of chords AD, DC, and CB, when
each has been multiplied by itself.22 We construct on AB triangle ABZ similar to triangle
AE[D]. With [Z] as center we draw sector ZAHB. It follows that sector ZAHB will be equal
to sector EADB, and segment AHB is equal to the [sum of the] three segments AD, D[C],
and CB. Therefore, lune ADCBH is equal to the rectilinear figure ADCB.23 QED

20This construction and the one in the next line can be carried out by the procedure given in Elements II.14, “To
construct a square equal to a given rectilinear figure.”

21By Ptolemy’s theorem, proved earlier in the text, AC · BD = AD · BC + AB · CD. Due to the symmetries of
ABCD, we have AC2 = BC2 + AB · CD. But AC was constructed such that AC2 = BC2 + AB · BC, so CD = BC.

22BC was constructed such that AB2 = 3 · BC2. The equality of AD, DC, and CB thus establishes Alfonso’s
claim. Therefore, similar shapes constructed on AB and on BC (or AD or DC) will have an area ratio of 3 : 1, as
Alfonso claims.

23The lune equals the trapezoid ADCB less segment AHB plus the sum of the three segments CB, DC, and AD.
But these latter three segments equal segment AHB, so the lune equals the trapezoid.
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The conchoid of Nicomedes and its applications (propositions 29–32)
Propositions 29–32, which are presented here, seem to form an independent unit, dealing with
the conchoid of Nicomedes and some of its uses. Being located toward the end of the third
chapter, it can be considered as one of the book’s pinnacles. The quoted text is not long but
is representative of the third chapter as well as of Alfonso’s general mathematical style. This
selection is of both historical and mathematical interest: it attests to the fact that the conchoid
was known earlier than hitherto assumed, and that Alfonso’s methods seem to be relatively
complex and somewhat unique to the author.

Given a straight line (the “ruler” or “canon” AB), a point outside it (the “pole” P) and a
distance (d), the conchoid of Nicomedes is the locus of all points lying at the given distance
d from the ruler AB along the segment that connects them to the pole P.24

If P is the origin, and AB is the line y = a, then the curve is defined by the polar equation
r = a

sin θ
+ d. The curve has two branches on opposite sides of the ruler, to which both are as-

ymptotes. The branch passing on the side of the pole has three different distinct forms, depend-
ing on the ratio between a and d: If a < d, it has a loop (as in Fig. IV-6-2); if a = d, then P is a
cusp point; and if a > d, the curve is smooth. The other branch does not change topologically.

24The conchoid can be viewed as the trace of a fixed point on a straight line through the pole, moving along the
ruler, but it can also be defined in terms of the neusis property as the locus of all the points on any line through the
pole whose distance from the ruler along the line is constant. It is not clear whether the latter definition, seemingly
not involving motion, can be attributed to Nicomedes himself [Sefrin-Weis, 2010, p. 244, fn. 3]. Yet, as already
mentioned, geometric motion was characteristic of Alfonso’s approach.



February 26, 2016 Time: 03:47pm chapter2.tex

354 Mathematics in Hebrew

Fig. IV-6-2.

It is generally accepted that the conchoid, whose name means shell form,25 was invented
and first studied by the Greek mathematician Nicomedes (ca. 280–210 BCE).26 In his
treatise On Conchoid Lines, known to us from secondary sources,27 Nicomedes supposedly
described the generation of the curve, its classification into types, some of its properties,
and a mechanical device for drawing it. Nicomedes also applied the curve to solve two of
the classical problems of antiquity: the trisection of an angle and the doubling of the cube
(reduced to the problem of finding two mean proportionals).28 Both solutions depend on a
construction that cannot be implemented with compass and ruler but can be implemented
with a conchoid.

It is usually taken for granted that all the applications of the conchoid made in antiquity
were developed by Nicomedes himself, and that interest in it was revived in the late sixteenth
century [Toomer, 2008]. But Alfonso’s text presented below provides rare evidence that the
conchoid was known and used in the West in the fourteenth century. In proposition 29, Alfonso
constructs the conchoid, and in the three following propositions (30–32) he uses it to trisect
an angle, find two mean proportionals, and construct a parallelepiped of the same volume as
a given parallelepiped that is also similar to another given parallelepiped. The main questions
concern the sources of this knowledge and the manner of its transmission. A close study of
the text indicates significant differences between Alfonso’s approach to the conchoid and the
parallels known from Greek sources.

First, Alfonso stated his aim in constructing the conchoid (proposition 29) as the finding of
two asymptotic lines, whereas it is accepted that Nicomedes invented the conchoid to trisect
an angle and duplicate the cube [Heath, 1981, p. 238; Sefrin-Weis, 2010, pp. 126–128].29

25The curve was called “conchoid” by Proclus, but Pappus called it “cochloid.” Heath claims that the latter was
evidently its original name [Heath, 1981, p. 238].

26Nothing is known of his life; the dating is estimated by references to his work. See [Heath, 1981, p. 238;
Toomer, 2008].

27Pappus’s Collection, Eutocius’s Commentary on Archimedes’ Sphere and Cylinder, and Proclus’s Commentary
on Euclid I. See [Toomer, 2008].

28In the case where the greater line is double the smaller line. The reduction was established in the fifth century
BCE by Hippocrates of Chios. See [Heath, 1981, pp. 244–246].

29But it was also understood that this curve is interesting in itself: Geminus, in his first classification of lines
[Heath, 1956. pp. 160–161] includes the conchoid and the hyperbola in the same subdivision, for having the same
subtle distinguishing character: they are “asymptotic.” Thus it is possible that the asymptoticity of the conchoid had
already been adopted as its main character by some scholars before Alfonso.



February 26, 2016 Time: 03:47pm chapter2.tex

Scholarly Geometry 355

It should be noted, however, that a simpler example of asymptotes was offered by Apollonius
of Perga and was well known in the Jewish world through a remark in Maimonides’s
Guide for the Perplexed I.73 [Freudenthal, 1988; see section IV-5 above). Alfonso probably
preferred the more complex example of the conchoid, because he was interested in the uses
of this curve as well.

Second, the wording of proposition 29 suggests that both branches of the curve are
constructed and both of them are used in the following propositions: the external one in
proposition 30, and the internal one in proposition 31.

Third, the angle trisection (proposition 30) is achieved in a similar manner to that attributed
to Nicomedes [Heath, 1981, p. 235; Sefrin-Weis, 2010, pp. 148–149], but the position of
the perpendicular (relative to the angle’s side) is different, hence the required trisection
is constructed outside the given angle, rather than inside. Of the three applications of the
conchoid that Alfonso mentions, only this one resembles one of those known from the Greek
tradition.

Fourth, and most interesting, proposition 31 is an impressive construction of two mean
proportionals that neither resembles nor alludes to any Greek or Arabic solutions known to
us.30 Moreover, proposition 32 seems to be a unique generalization of the problem of doubling
the cube, which does not simply rely on the reduction of the problem to that of finding two
mean proportionals31 but shows how to use these proportionals to construct the doubled cube.

We do not know whether Alfonso acquired his knowledge about the conchoid from an
unknown Arabic text based on Pappus’s Collection, or from some oral tradition. Therefore
it may not be determined whether he preserves a tradition unknown to us, or whether
propositions 30–32 render his own elaboration, based on a fragmentary acquaintance with the
known tradition that goes back to Pappus. Like the question of whether and how he “squared”
the circle, this question too remains open.

Proposition 29: We wish to find the origin32 of two lines, the one straight and the other
curved, so that there is a certain [initial] distance between them, but when produced, the
distance between their extremities decreases; one of them approaches to the other, but
they do not intersect, even if produced indefinitely.

How? We consider two lines AB, BC enclosing a right angle B, and we pick a point
D on the line AB either between A and B or beyond B.33 Then we move point B on
the line BC in the direction of point C, so that the line BD is moved with it in such a
manner that the point D is opposite to point A, namely, points A, D, B are always collinear
[Fig. IV-6-3]. By this motion point D describes a segment of a curved line DGH, which we

30See [Clagett 1964–1984, I, pp. 335–345, 658–665, III, pp. 27–30, 849–854, 1163–1179; Heath, 1981,
pp. 244–268; Knorr, 1989, pp. 251–319; Rashed, 2011–2014, pp. 60–69, 103–107].

31This fact is notably remarkable in light of Heath’s comment that since this reduction had been shown, all later
mathematicians considered the problem of two mean proportionals rather than the original problem [Heath, 1981,
p. 246].

32Literally, yes. iat shney haqavim.
33The external branch is not mentioned explicitly, but its existence is implied: it is said that point D is picked

outside B too. Reading the construction with reference to the letters noted by a prime in the diagram (G′ instead of
G, etc.) generates this branch.
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Fig. IV-6-3.

call the conchoid.34 I say that as long as lines BC, DGH are produced in the direction of
CH, the distance between their extremities decreases, and they never meet.

The demonstration: We draw the two straight lines AHC, AGE. The three lines BD, GE,
HC are equal to one another. We draw from the points G, H two perpendiculars GI, HK
onto the line BC. Since (i) the square of the line GE is greater than the square of GI,
(ii) the two triangles GIE, KHC are right-angled, (iii) the hypotenuses GE, HC are equal,
and (iv) the angle GEI is greater than the angle KCH, it follows that the perpendicular
GI is greater than perpendicular HK. Similarly it can be shown that of the perpendiculars
drawn from the conchoid DGH to the straight line BC, the closer [perpendicular] to the
line AB is greater than that more distant from it. Hence, as long as the two lines BC, DGH
are produced in the direction of CH, the distance between their extremities decreases and
they never meet. QED

34The original term is: haqav haparus. . We are not aware of the use of this word in Hebrew mathematical texts
before Alfonso. The root prs. means (1) to expand, to spread out without limits (like the Arabic root frš); (2) to
crack, to break through (the Arabic root frd. has the related meaning of “to notch,” “to make incisions”). In his
first classification of lines (given by Proclus; see [Friedlein, 1873, pp. 111; Heath, 1956, pp. 160–162]), Geminus
distinguishes between composite and noncomposite lines, and divides the latter class into: (a) those forming a figure
(e.g., circle, ellipse, cissoid) and (b) not forming a figure or indeterminate and extending without limit (e.g., straight
line, parabola, hyperbola, conchoid). In a second version of the classification [Friedlein, 1873, pp. 176–177; Heath,
1956, p. 160], a fine distinction of the last subdivision is made: “of the lines which extend without limit, some do not
form a figure at all, but some first come together and form a figure, and for the rest, extend without limit.” Following
Tannery, Heath concludes almost inevitably that the figure formed is a loop, and that “the curve which has a loop
and then proceeds to infinity is a variety of the conchoid itself”—namely, the branch having the loop. These two
characteristics of the conchoid may be thought of as associated with the two meanings of parus. mentioned above
(forming a figure—cracked; extending without limit—spreading out).
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Fig. IV-6-4.

The instrument designed to draw the conchoid is common among craftsmen, and is
very useful in this discipline.

Proposition 30: To divide any rectilinear angle into three equal parts.
How? We consider a rectilinear angle ABC and erect a perpendicular BD upon AB,

we set the size of BC as we wish, and we produce AB indefinitely in the direction of B
[Fig. IV-6-4]. We put the plotting device at the point C in such a manner that it meets the
two lines AB, BD at the two points D, E, such that the line DE is twice the line BC. This
can be done by drawing the conchoid as mentioned above.35 Then angle DEB would be
a third of the given angle ABC.

The demonstration: Since the line DE of triangle BDE is the hypotenuse of the right
angle DBE, and when we cut it at the [mid]point G and join BG, [the line] EG becomes
equal to GB, which is equal to DG,36 then the angle BGC, which is equal to the angle
BCG, is equal to angle GBE together with angle GEB. So the angle DEB is a third of the
two angles GEB, GCB together, which are equal to the given angle ABC.37 QED

Proposition 31: We wish to find two straight line segments [that are] mean proportionals
between two other straight line segments which are unequal to one another.

How? We let AB be the smaller line and CE the larger. We describe a semi-circle whose
diameter is CE, the larger [segment], and whose center is B. D, the midpoint of AB, falls

35To trisect angle ABC, Alfonso finds a point E on the line AB (beyond B) so that ED = 2BC. This is done by
means of a conchoid with pole C, ruler BD and distance 2BC. Here Alfonso implicitly assumes that the angle is acute.

36Since BG is the median to the hypotenuse ED of the right-angled triangle EBD.
37If we set angle E = θ , then angle BGD equals 2θ , being an exterior angle to triangle GEB. According to the

construction, BC = BG, so triangle BGC is also an isosceles triangle, and the angle BCD is 2θ . Therefore the angle
ABC, being an exterior angle to triangle BCE, equals 3θ , and the angle Eequals one third of the angle ABC.
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Fig. IV-6-5.

on the diameter [CE]. We draw a perpendicular DG on the diameter [and extend it] to the
circumference of the circle, and we produce AD in the direction of H until AH equals AB.
We join HG, and draw from the point B a line BL parallel to HG and produce it indefinitely.
We draw from point G a line GM toward the line CEM, meeting the line BL at the point L,
in such a manner that the line LM is half the diameter [Fig. IV-6-5]. This can be done by
drawing the conchoid.38 I say that the ratio of AB to GL is as the ratio of GL to BM, and
as the ratio of BM to CE.

Its demonstration: We produce GM until LN is equal to the diameter. Since the excess
of the product of MG by itself over the product of BG by itself is as the product of MB by
itself and by twice BD,39 which is also as the product of GL by itself and by twice LM,40

then the product of AM by MB is as the product of NG by GL.41 Moreover, the ratio of AM
to NG is as the ratio of GL to MB, and the ratio of AB to GL is as the ratio of half MB to
LM, which is equal to the ratio of MB to LN.42 It was already established that the ratio of
AB to GL is as the ratio of AM to NG, which is equal to the ratio of LG to MB.43 Hence, the
ratio of AB to GL is as the ratio of GL to MB and to the ratio of MB to LN, which is equal
to the diameter.

38Here we use the conchoid with pole G, ruler CE and distance BE = 1
2 CE. By means of it one may find a line

through G, cutting the parallel through B at point L and line CE at point M, so that LM = BE. L is actually the
intersection point of the conchoid with the parallel through B.

39MG2−BG2 =(MD2+DG2)−(BD2+DG2)=(MB + BD)2−BD2 =MB2+2MB · BD=MB(MB+2BD).
40MG2 − BG2 = GM2 − LM2 = (GL + LM)2 − LM2 = GL2 + 2GL · LM = GL (GL + 2LM).
41Since MB + 2BD = MA and GL + 2LM = GN, the last two footnotes yield MB · MA = GL · GN, and conse-

quently GL : MB = MA : GN.
42HB and GL are segments of rays caught between the parallels HG and BL. By triangle proportion theory, their

ratio is the same as that of the segments between the parallel and the origin, MB : ML. If we divide both ratios in half,
we get AB : GL = BM

2 : LM = BM : LN.
43We already have AB : GL = BM : LN, which by proportion theory is the same as (AB + BM) : (GL + LN) =

AM : GN, which is already known to be the same as LG : MB.
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Fig. IV-6-6.

Proposition 32: We wish to construct a polyhedron44 which is equal [in volume] to a
given polyhedron, and which is similar to a second given polyhedron.45

How? We set a polyhedron whose base is the area AB and whose height is DB, and a
second polyhedron whose base is the area EH and whose height is IG [Fig. IV-6-6]. We
wish to find a third polyhedron which is equal to the first and similar to the second. We
erect upon area EH another polyhedron whose height is GK, and which is equal to the
first polyhedron.46 We draw between GK and IG two mean proportionals, P, LN, so that
the ratio of GK to P is as the ratio of P to LN and as the ratio of LN to IG.47

We set the ratio of NM, which is unknown, to EG, which is known, to be as the ratio
of LN, which is known, to IG, which is known. We erect upon the line NM an area MO
which is similar to the area EH. It [the area MO] would be the base of the required third
polyhedron and LN would be its height.

Its demonstration: Since the ratio of GK to LN is as the duplicate ratio of LN to IG,
which equals the duplicate ratio of NM to EG,48 which equals the ratio of area MO to area
EH, then the product of GK by area EH is as the product of LN by area MO, and the two
polyhedra are equal.49 Therefore the third polyhedron is equal to the first. And since the
ratio of LN to IG is as the ratio of NM to EG, the third polyhedron is similar to the second.

V. ALGEBRA

The Hebrew literature does not contain much algebra [Lévy, 2003, 2007]. The only explicitly
algebraic treatises known are an anonymous algebra in the tradition of al-Khwārizmı̄ [Lévy,
2002; Aradi, 2013], al-Ah. dab’s commentary on Ibn al-Bannā’s algebra (see below), Mot.ot.’s

44Though the general word “polyhedron” is used, it seems that Alfonso actually intends to deal here with
parallelepipeds or even strictly boxes. However, it is easy to generalize the proposition to prisms.

45This proposition appears to be a spatial version of Elements VI.25: “to construct a figure similar to one given
rectilinear figure and equal to another.” It may also be regarded as a generalization of the Delian problem, where the
first polyhedron is any parallelepiped with a volume of two cubic units, and the second polyhedron is a cube whose
side is one unit. From another point of view, it may also be regarded as a generalization of Euclid XI.27: “to describe
a parallelepipedal solid similar and similarly situated to a given parallelepipedal solid on a given straight line.”

46Alfonso does not give any details about the way this construction should be carried out.
47By the previous proposition.
48NM is such that NM : EG = LN : IG (Elements VI.12).
49GK : LN = (LN : IG)2 = (NM : EG)2 = area(MO) : area(EH) by Elements VI.20. Hence GK · area (EH) =

LN · area (MO).
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algebra written in Italy (see below), and Finzi’s translations of the Italian algebra of Maestro
Dardi [Wagner, 2013] and of the Arabic algebra of Abu Kāmil’s (possibly through a Spanish
or Hebrew middleman) [Levey, 1966].

But even before the “official” algebra using the Khwārizmian terms (root/thing,
square/property, cube, etc.) and six normal forms of linear and quadratic equations, quadratic
problems were treated by methods that go back to Mesopotamia, namely, the reduction of
problems to deriving the values of two unknown from their product and sum/difference with
an implicit or explicit geometric model. The following selection opens with problems of
the latter type. Then we bring extracts from Mot.ot. and al-Ah.dab expounding the double
false position, classical Khwārizmian algebra, and operations with combinations of powers
of unknowns—the forerunners of modern polynomials.

1. QUADRATIC WORD PROBLEMS

We begin with some word problems that involve quadratic equations but that do not
use explicit algebraic terms or methods. The basic technique is deriving the value of two
unknowns with a given product and sum/difference.

a. A quadratic problem from Levi ben Gershon’s Ma↩ase H. oshev
Problem 16 of Levi ben Gershon’s Ma↩ase H. oshev (see section I-6) is a quadratic problem,

whose roots can be traced as far back as ancient Mesopotamia.1 In Mesopotamia, this was
a geometric problem, but it also occurs as a purely arithmetic problem in Diophantus’s
Arithmetica, Book I, #27 [Heath, 1964, p. 140]. Diophantus, however, insists on a rational
solution, while Levi does not.

16. We multiply one number by another and get the result. The sum of the two numbers
is given. What are each of the numbers?

Take the square of half the sum of the two numbers, and subtract the result from it.
Take the square root of what remains, and add it to half the sum of the two numbers, to
get the first number. If we subtract it from this half, you get the second number.

For example, the sum of two numbers is 13, and their product is 17. We know that the
square of half of 13 is 42 and a quarter. Subtract 17, leaving 25 and a quarter. Extract the
square root to get 5 wholes and one first, 29 seconds, 46, 34. Add this to 6 and a half,
which is half of 13, to get the first number: 11 wholes, 31 firsts, 29, 46, 34. The second
number is: one whole, 28 firsts, 30, 13, 26. The product of one with the other is 17 to a
very close approximation.2

It is impossible to find this number exactly, because 25 and a quarter does not have a
true square root, as was explained. This is because the ratio of 25 and a quarter to 25
equals the ratio of one hundred and one to one hundred. But the ratio of one hundred and
one to one hundred is not equal to the ratio of a square to a square, since if this were the
case, one hundred and one would be a square, because one hundred is a square. But if
one hundred and one were a square, then its square root would be a whole number, and
that is false.

1This problem only occurs in the first edition of the Ma↩ase H. oshev. Levi eliminated it in the second edition.
2Levi is using sexagesimal fractions, as was taught in part II of his treatise.
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If the problem was: we multiply a given number by a fixed part of itself; and we add
the result to the product of this part with the remaining part of the given number; and the
answer is given; what are each of the parts?3

Take the square of the whole number, and subtract from it the sum composed of the
product of the number with a part of itself and the product of this one part with the other
part. Take the square root of what remains, and this is one part. What remains from the
number is the fixed part.

For example, the product of ten with a given part of itself, plus the product of this part
with the second part, equals eighty. We want to know: what is the given part? The square
of ten is one hundred. We subtract eighty from this to get twenty. We extract the square
root, which is approximately 4 wholes, 28, 19, 41, 21, and this is one part. What remains
is 5 wholes, 31, 40, 18, 39, which is the given part. If you multiply this part by ten and by
the leftover, you get eighty to a very close approximation.

b. Quadratic word problems from an anonymous arithmetic
This section was prepared by Naomi Aradi

An anonymous arithmetic textbook, which survives only partially in three manuscripts,
reveals some calculation methods that are seemingly uncommon in medieval Hebrew
arithmetic, such as exceptional root approximations. This treatise does not deal with written
calculations but only with mental calculations. It opens with an introduction discussing some
special properties of the numbers one to ten and general properties of numbers. In the Geneva
manuscript excerpted below, a section containing a discussion of algebraic equations was
inserted into the introduction. This section was identified by [Lévy, 2002] as an adaptation
of a paragraph from the Algebra of al-Khwārizmı̄. After the introduction come six chapters
on addition, subtraction, multiplication, division, ratios, and roots. Apparently two additional
chapters appeared before the last chapter (on roots): “Deducing (hos. a↩at) One from Another”
and “Converting (hashavat) One to the Other.” In each of these eight chapters the arithmetic
operations are presented with integers, sexagesimal fractions, and simple fractions. A detailed
outline of the text can be found in [Aradi, 2013].

The chapter titled “Deducing One from Another,” which was preserved only in this Geneva
manuscript, is devoted mainly to illustrating ways of solving word problems [Aradi, 2013,
pp. 277–292]. These problems are presented with short, unmotivated solutions. They begin
with a string of highly standardized commercial problems (applications of the Rule of
Three to pricing, salary, and partnership) taken from Abraham Bar H. iyya’s Foundations
of Wisdom. Then, however, follow problems that are exceptional in that they involve non-
homogeneous operations, have no commercial application, and lead to quadratic problems,
which are infrequent in Hebrew arithmetic writings. Again, the following problems are
not solved by reduction to Khwārizmian normal forms as presented in the Mot.ot. selection
below.

3The problem can be formulated as follows: given A = x + y, and B = Ax + xy, find the parts x and y. The
solution is based on the observation that y2 = A2 − B.



February 26, 2016 Time: 03:47pm chapter2.tex

362 Mathematics in Hebrew

A pricing problem
If you give an unknown [quantity of] kors [a Talmudic unit of dry measurement] for a price
of 60 and you subtract the price of one kor from all the kors, 4 would remain.4

Take half of the 4, and multiply it by itself, which are 4. Add them to the sixty, and take
the root, which is 8. Add the 2, these are 10, which is [the number of] the kors. Or, if you
subtract the 2 from the 8, six remain, which is the cost of a kor.5

A salary problem
You hired a salaried worker for an unknown [number of] days for an unknown [quantity of]
dinars. When you add up the days and dinars they sum up to 40. He worked unknown days
so that when multiplied by their [sic] salary the total is 12. If you multiply the remaining
days by the remaining salary, the total is 192. How much are the unknown days, how
much are the dinars, and how much is the [payment for] 10 days?

Divide 192 by 12, yielding 16. Take their root, which is 4. Add one, which is 5. Divide
40 by them, 8 comes out. Take their half, 4, multiply them by themselves, and subtract
12 from the result, 4 remain. Take their root, which is 2, add it to the 4, which is half
the 8, and the result, 6, is the unknown [number of] days he worked. Alternatively, find
the ratio of the 12 to 192, which is half an eighth. Take the root, which is a quarter, and
always add one, which are one and a quarter. Divide 40 by them, the result is 32. Take
their half, which are 16, and multiply by themselves, yielding 256. Subtract from these
the 192, 64 will remain. Take their root, which is 8, and add it to the 16, these are 24.
Add them to the first 6, and the sum, which is 30, is the unknown [number of] days of
the job. Subtract them from the 40, and the remainder, which is 10, are the unknown
dinars.6

A partnership problem
One [gave] 10, the second [gave] 20 and the third [gave] 40. When you multiply the

profit of the first and the second by the profit of the third, the result is 48. What was the
profit of each one?

Add the 10 and the 20, and multiply the result by the 40. The result is a thousand and
two hundred. Find the ratio of 48 to the above, which is a fifth of a fifth. Consider them as
fractions, and take their root, which is a fifth. Take a fifth as the profit rate for each, so the
first is 2, and the second 4 and the third 8.7

4Note that we subtract a number designating a price from a number designating volume.
5Let a be the number of kors, and b the price of a kor. ab is 60 and a − b = 4. The solution proceeds in the

standard manner.
6If a and b are the number of days worked and salary received, respectively, and a′ and b′ are the remaining

days and salary, we get a :a′ = b :b′. Therefore, a′b′
ab = 192

12 = 16 is the square of a′
a = b′

b = 4. Next, given this

ratio, a + b = a′+b′+a+b
4+1 = 40

5 = 8. We now have ab = 12, a + b = 8, which is solved in the standard manner. The

alternative solution derives a′ + b′ from ab
a′b′ according to the same procedure. Note that the products and sums are

not homogeneous quantities.
7Let x be the profit rate. We have: (10x + 20x) 40x = 48, yielding x2 = 48

(10+20)40 = 1
25 . Note that the ratio 1:25

has to be “considered as a fraction” for its root to be taken.
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c. A quadratic problem from Elijah Mizrah. i’s Book of Number
This section was prepared by Stela Segev

This problem from Elijah Mizrah. i’s Book of Number (see section I-5) discusses a quadratic
equation and is solved by what we now call Viète’s formulas. Elsewhere (problems 50–52)
Mizrah. i treats the three kinds of quadratic equations with the standard formulas. In both cases,
this treatment remains unmotivated.

Question [24]: If you want to know a number which, when its third is multiplied by its
quarter (or any other part of it by any other part), the result is the number itself added to
seven, for example, or a multiple of the number added to another number, how can one
find this number?8

The answer is that this question is composed of multiplication, ratio and addition.
Therefore we multiply the two fractions without reference to the sought number and apply
ratios to the result. We say: if the result equals some multiple of the sought number
added to some number according to the question, how much is one whole?9 We save
the resulting multiple [mnb]. We then take the resulting number [mnc], and look for all
the pairs of numbers which, when multiplied, yield that number.10 We write them down
pair by pair, that is, each pair of numbers, whose product is that number, side by side,
each with its partner. The number which, when added to the saved multiple, equals its
partner—its sum with the saved multiple is the sought number.11 That holds when the
[sought] numbers are whole. But if [the sought number is] a whole number and a fraction,
we look for two numbers that bound the sought number between them, and find the sought
number easily because it is bounded between the two numbers.

Example with integers: If you ask which number, when its half is multiplied by its quarter,
equals the number itself added to 6, you have to multiply the half by the quarter without
reference to the sought number, and you get one eighth. Then we apply ratios and say:
if the eighth equals the number itself added to 6, how much is one whole? We get 8
[multiples of the sought number] and the number 48.

We save the eight, and look for numbers which, when multiplied, yield forty-eight.
These are pairs, each along with its partner: 1 with 48, 2 with 24, 3 with 16, 4 with 12,
and 6 with 8—for when any of these pairs is multiplied, they yield 48. Then we check
every pair to see which number, when added to the saved [multiple] 8, equals its partner.
We find the number 4 which, when added to the saved 8, yields 12. The sum equals its
partner, as the partner of 4 is 12. Therefore we assert that the sought number is 12. From
this you will be able to find the solution with integers and fractions as well.

2. SIMON MOT. OT. , ALGEBRA

Our knowledge of Simon Mot.ot. (or, perhaps Mit.ot., i.e., “from T. ot.”) comes only from the
manuscripts of his two mathematical treatises, one on algebra, and the other on the asymptotic

8If x is a number, we can write the equation as: x
m · x

n = bx + c.
9x2 = (mnb) x + (mnc) .
10This refers to all pairs p, q such that pq = mnc.
11When we find a pair such that p + mnb = q, then p + mnb is the sought number. This method depends on what

we now call Viète’s formulas for quadratic equations.
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property of the hyperbola, but the latter attribution has been questioned by [Lévy, 1989b].
From the dedication of the algebra treatise, we can date his work to the mid-fifteenth century,
and place him in contact with the avid copyist and translator of scientific texts, Mordekhai
Finzi [Steinschneider, 1893–1901, p. 193; Lévy, 2007].

Mot.ot.’s treatise of algebra belongs to the Italian abbacus tradition—the culture developed
around schools where children of merchants were taught arithmetic. Indeed, Mot.ot. acknowl-
edges that his sources are Christian, and the content fits well. All the problems and proofs that
Mot.ot. presents appear in one way or another already in the algebraic treatises of fourteenth-
century abbacus masters [Høyrup, 2007, pp. 147–182]. (See also section III in Chapter 1.) As
was often done at the time, Mot.ot. opens with a brief definition of algebraic terms (the thing,
square, cube, and square-square, corresponding to today’s x, x2, x3, and x4, respectively),
explains how to make arithmetic calculations with roots and with binomials containing roots,
and then presents the six standard kinds of first and second order equations (in modern
transcription: ax = b, ax2 = b, ax2 = bx, ax2 = bx + c, bx = ax2 + c, c = ax2 + bx) and
culminates with some higher order equations that are reducible to them. He accompanies
some of his discussions with geometric proofs and numerical examples.

Mot.ot. claims that the incompleteness of his sources forced him to make up some contents,
but it is not clear what his original ingredients were. Perhaps the specific manuscripts
consulted by Mot.ot. were missing some proofs, which he had to reconstruct from his own
memory and ingenuity.

There are, indeed, some idiosyncrasies in Mot.ot.’s work, which may indicate slightly
different paths of transmission with respect to the dominant algebraic culture. First, the order
of presentation diverges from the order used in all early Italian algebras (Mot.ot. exchanges
the fourth and sixth case; see [Høyrup, 2007, p. 160]). The solutions of the first and third
examples also stand out as atypical in abacus culture. The fact that the fifth case, which may
have no solutions, one solution, or two solutions, is treated as if it always had one, suggests
that Mot.ot.’s understanding of algebra was probably not state of the art for his time. Here we
bring only the introduction and the treatment of the first six cases.

After praising the Lord, whose renown is glorious and illuminates all utterance and
action, may his name be blessed and much exalted, I begin and say.

You should know that in the calculus of algebra [lit.: alzibra] the Christians take one
part of a question, whose numerical value is unknown, and turn it in their reckoning into
a single whole thing, and call it cosa. They wish to indicate by this word two things: one
whole thing, and a hidden thing that we do not know. I shall follow suit as well in this
translation, and call it by the name thing [davar]. The product of the thing with itself they
call censo. I asked the grammarians of their tongue for the meaning of this word, and they
said that it designates a definite number, meaning an unknown definite number. And as
we found no single word in our tongue for this meaning, and as I did not want to extend
my speech by referring to this meaning by two words, nor to invent a new word in our
language, I called it a square [meruba↪], as it is indeed. And the product of the square
with itself they call censo de censo, and I call it square of the square. And the cube
[me↪uqav] number they call cubo. And the cube of the cube they call cubo de cubo. The
units of numbers they called numeri, as is their common habit elsewhere.

The discussion of arithmetic with roots is omitted here.
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Now, in the name of He who is known among the nations as the creator, I shall begin
to discuss the theorems of the calculus of algebra and explain them with my meager
intelligence. But before I begin, I present a proposition and its explanation.

I say: you should learn and have in mind that the ratio of the square-square to the cube
is as the ratio of the cube to the square and as the ratio of the square to the thing and as
the ratio of the thing to the unit. This is because the number of units in the thing is as the
number of things in the square and the number of squares in the cube and the number of
cubes in the square-square. Remember this proposition, because you will need it in the
proofs of the following theorems. Here I begin.

[1] When the things equal units, divide the units by the things and the outcome is the
thing. This is self-evident.

Question: I wish to divide the number ten into two parts, such that when one is divided
by the other, the quotient is 5.

Practice this method. Say that the part by which one divides is a thing. The part that
one divides is necessarily five things, like the outcome of the division.12 Added together
the two parts are six things, and are equal to the number ten. According to the method
indicated in this theorem, the number [10] should be divided by 6, which comes to 1 and
2 thirds. Such is the thing.

[2] When the squares equal units, divide the units by the squares and the root of the
outcome is the thing.

Question: I wish to find a number such that when its third is subtracted, the square of
the remainder is the number 20.

Practice this method. Say that the number, whose two thirds are the root of 20, is one
thing. Multiply its 2 thirds by themselves, making 4 ninths the square of the entire number
that I wanted to find. According to the method indicated in this theorem, the number 20
should be divided by 4 ninths, and the outcome is 45. Such is the square of the entire
number, and its root is what you wanted.

[3] When the squares equal things, divide the things by the squares and the quotient is
the thing.

This theorem follows the first theorem because the ratio of the square to the thing is
as the ratio of the thing to the unit, as we said in the proposition. Therefore, if one square
equals 3 things, for example, then one thing will necessarily equal 3 units.

Question: I wish to find a number such that when a third is subtracted, the remainder
is the root of the entire number.

Practice this method. Say 2 thirds of this number is one thing.13 Therefore, the entire
number is one thing and a half. So one thing and a half equal one square. According to the
indicated method, 1 and a half should be divided by one, yielding 1 and a half. This is the
thing, which is two thirds of the number you wish to find. The entire number is therefore 2
and a quarter.

12In Italian algebra, the parts would usually be modeled as x and 10 − x, which yields a slightly more complicated
procedure.

13Note the unusual choice of the thing: x is the required number after its 1
3 is subtracted. Therefore, the entire

number is 3
2 x, and we have x =

√
3
2 x, or x2 = 3

2 x.
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Fig. V-2-1.

[4] When the things and units equal squares, divide the things and units by the squares.
Halve the things coming from the division, and multiply this half by itself. Add the result to
the units coming from the division. Take the root of the result, and add to half the things
coming from the division. The result is the thing.

To demonstrate this [lit.: to show you this for the eye of the intellect], we draw a diagram
and bring a numerical example. Let the line AB measure 10, and divide arbitrarily at G.
Let AG measure 8. We set the square ABCD on AB. From the point G we draw a line GH
parallel to the lines AC and BD [Fig. V-2-1]. We have the surface AH, which is eight things
(like the measure of the line AG in number, because each unit measure in AG holds
one thing in the surface AH) and the surface GD, which measures 20 in area together
equal the square AD. Now here we face the line AG which measures 8 in length, like the
number of things. We divide it in half at I, and add the line GB. It has already been shown
in the sixth diagram of Euclid’s second book that [the square of IG, half the line, and] the
rectangle contained by the entire line with the addition [AB] and the addition [GB] (which
equals the surface GD, whose area is the number 20 in our example) together, being 36,
equal the square of the line composed of half the line [IG] and the addition [GB], which
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is the line IB in our diagram. Therefore, if you take the root of 36, which is 6, you get the
measure of the line composed of half the line and the addition, which is the line IB. Add
half the things, which is the number 4, as the measure of the line AI in number, and 10 will
result as the entire line AB, the side of the square. This is the thing.

Question: We wish to find a number such that adding to it 28, it will equal two times its
square.

Practice this method. Say that this number is one thing. When we’ve added 28 it
becomes one thing and 28 units. These equal two squares. Then, according to the method
indicated in this theorem, one thing and 28 units should be divided by 2, the number of
squares. The quotient is half a thing and 14 units. Take half of the half thing, which is the
quotient. It is a quarter of a thing. Multiply it by itself, it is one part in 16. Add to 14, the
number of units in the quotient, yielding 14 and one part in 16. Take its root, which is 3 and
3 quarters. Add it to half the things in the quotient, which is a quarter of a thing, yielding 4.
This is the thing.

[5] When the squares and units equal things, divide the things and the units by the
squares. Halve the quotient of the things and multiply by itself. Subtract from the result
the number which is the quotient of the units. Add the root of the remainder to half the
quotient of the things. The result is the thing.

The geometric proof is omitted here.
Question: A merchant went trading with a certain capital, and earned 6. He then

returned with that capital and the profit, and made a profit at the same ratio as in the
first round, having altogether 27. You wish to know the number of the initial amount.

Practice this method. Say that the initial capital is one thing. He succeeded and made
this thing into a thing and 6, and by the same ratio, from one thing and 6 he made 27.
The ratio of a thing to a thing and 6 is as the ratio of a thing and 6 to 27 units. We have
three magnitudes in proportion. It is known then from proposition 17 of the sixth book of
Euclid that multiplying the first by the last equals multiplying the middle by its own image.
Now multiply one thing, which is the first, by 27 units, which is the last, yielding 27 things.
Then multiply one thing and 6, which is the middle, by itself, yielding one square and 12
things and 36 units. Now subtract the 12 things from these two equal magnitudes, leaving
15 [things] equal to one square and 36 units. According to the method we stated in this
theorem, the number of things, 15, and the number of units, 36, should be divided by one,
which is the number of the square. The quotient is 15 things and 36 units. Then halve the
things, which are 7 and a half, and multiply by themselves. The result is 56 and a quarter.
Subtract 36 units, leaving 20 and a quarter. Take its root, which is 4 and a half, and add
to half the things, which is 7 and a half, yielding 12. This is the thing which is the initial
capital.

[6] When the squares and things equal units, divide the things and the units by the
squares. Halve the quotient of the things and multiply the half by itself. Add the result to
the quotient of the units. The root of the result less half the things in the quotient is the
thing.

The geometric proof is omitted here. This case is not accompanied by a numerical problem.
This is the span of what I sought and found here and there about the calculus of

the book of algebra in the books of the Christians. I made up many of these theorems
myself. You should know, my dear brother Mordekhai (that he might see offspring and have
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long life, and that through him the Lord’s purpose might prosper),14 son of our honorable
master Abraham Finzi (may his memory live in the world to come) that the author of the
book of all these theorems brought them in his book without proofs, and none of those
who read it knows the methods of this scholar and where he found them. I, your brother,
seeing you and my dear friend Rabbi Judah, son of our honorable master Joseph (may
God save him and keep him alive), son of our honorable master Avigdor (may his memory
live in the world to come), longing to know it, and, as he who knows, if we are to call him
“one who knows,” must know by logical proof—I had to study the proofs and write them
for you so as to fulfill your wish.

I was, however, succinct for two reasons. The first is because I trust your good spirit,
the divine spirit hovering over all wisdom. The second is the toil and trouble that came
upon me to preoccupy my mind and body, and my many dealings in worldly business. But
if one of you misses anything due to my brevity and weariness of long proofs, I say that
I am willing to further clarify it. One must not be long, except in appealing to God, may
He fulfill all thy wishes, let thy springs spread, springs of salvation, Amen. In accordance
with your will and the will of your faithful brother, who abides by your command, Simon,
son of our honorable master Moses (may God save him and keep him alive), son of our
honorable master Simon Mot.ot. (may his memory live in the world to come).

3. IBN AL-AH. DAB, IGERET HAMISPAR (THE EPISTLE OF THE NUMBER)

This section was prepared by Ilana Wartenberg
Isaac ben Solomon ibn al-Ah. dab (Castile, ca. 1350–Sicily, ca. 1430) was a Jewish

polymath. His prolific writings covered a wide range of fields: astronomy, reckoning of the
Jewish calendar, mathematics, exegesis, and poetry. After leaving Castile, he studied with
Muslim scholars in North Africa. Then, on the way to the Holy Land, he was shipwrecked
in Syracuse, Sicily. At the request of the local Jewish community there, Isaac composed The
Epistle of the Number.15

The Epistle of the Number is the first and only known Hebrew version of the succinct
Arabic mathematical tract Talkhı̄s. A ↩māl al-H. isāb (A Summary Account of the Operations of
Calculation) written by the famous Moroccan mathematician Ah. mad ibn al-Bannā↩ (1256–
1321) (see parts I-1 and II-1 of Chapter 3). The Epistle of the Number is not only the
first Hebrew text we know of that contains explicit algebraic materials but it also includes
numerous arithmetical themes.

The Epistle of the Number presents a perfect translation of Talkhı̄s. A ↩māl al-H. isāb
as well as detailed mathematical explanations accompanied by a multitude of numerical
examples, philological and philosophical discussions. (See section II-1 in Chapter 3 for a
direct translation of this part of Talkhı̄s. from the original Arabic.) The Hebrew text follows
the structure of its main Arabic source: the first part is dedicated to arithmetic, that is,
arithmetical operations on three types of known quantities (numbers): integers, fractions,
and roots. The second part of the book presents three methods to determine the value of

14Isaiah 53:10, quoted in acronym.
15The Epistle of the Number survives in a fragmentary unicum [Cambridge University Library, Heb. Add. 492.1,

ff. 1b–38b]. For various analyses of the text and its context, the author’s life, and a critical edition and English
translation, see [Lévy, 2003; Wartenberg, 2007, 2008a,b,c, 2013, 2014].
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the unknown: the Rule of Three, the rule of false position, and algebra. The part on algebra
includes lengthy discussions of algebraic elementary entities (numbers, roots, and squares)
and algebraic operations (restoration, opposition, and equation). It also presents a detailed
analysis of algebraic expressions, the “ancestors” of modern polynomials. At the very end
of the truncated unicum we find a series of various problems (e.g., charity distribution,
time-velocity-distance calculations) that are solved by algebraic methods.

Double false position
The method of scales is usually referred to in modern mathematics as the rule of false

position. This method was widely known in the Arabic mathematical tradition.16 It is an
arithmetical procedure that enables one to find the value of the unknown in what could be
anachronistically termed “linear” problems by balancing out the errors of wrong guesses.
The standard method of double false position requires two different guesses, and it can
be used in problems with two unknowns. However, where there is only a single unknown,
the method can be adapted to a single guess. Both possibilities are treated below.

The basic tool used in this method are scales, where one writes one’s guesses, the results
of substituting these guesses into the problem, and the resulting errors. Since the errors are
considered as absolute numbers (rather than signed numbers), the algorithm depends on the
direction of errors. Ibn al-Ah. dab treats all such possibilities, but here we only include an
example where the errors are positive.

He [the author of the Talkhı̄s. ] says: The method of scales is part of the art of
mathematics17 and their shape is to be drawn as follows [Fig. V-3-1]:

Place the given known number on the fulcrum. Take one of the pans, and then
take any number you wish and carry out the procedures which were given, whether
addition or subtraction or another procedure. Then compare the result with the
number on the fulcrum. If you find that it is the same value, then the value you have
chosen is the unknown number.

He says that this is part of the science of mathematics because at times he adds, at
times he subtracts, and takes the intermediate value and this is found in mathematics
such as the mean, minimal and maximal distances found in [astronomical] tables, and
so on.

You already recognize from the form of the fulcrum that it is the upper part of the scales,
which is called the level, and the pans are hung by threads. Draw it as follows [Fig. V-3-2]:
or in any form you wish.

We shall give the example we have given in the part on the proportional numbers,18

i.e., a wealth [that is, a certain amount of money], from which one has subtracted both a

16According to [Suter, 1901, p. 31], the method of scales was already known in Baghdad in the ninth century at
the time of al-Khwārizmı̄; it was also widely used in North Africa and in the Middle East. See [Youschkevitch, 1976,
pp. 45–48]. The method of double false position appears earlier in the Chinese work Nine Chapters of the
Mathematical Art (first century BCE) [Dauben, 2007, pp. 269–274]. See section II-3-2 in Chapter 1 for its appearance
in Fibonacci’s Liber abbaci.

17The Hebrew term hamelakhot halimudiyot usually refers to astronomy or mathematics, the latter being most
fitting in our context. Here it is used to translate the Arabic term , which literally means “the art of
geometry.” See Section II-1 in Chapter 3.

18This refers to the Rule of Three, which was explained right before the method of scales.



February 26, 2016 Time: 03:47pm chapter2.tex

370 Mathematics in Hebrew

Fig. V-3-1.

pan

fulcrum

pan

Fig. V-3-2.

third and a quarter, and ten is left. How large is the wealth?19 Draw the scales as follows
[Fig. V-3-3]:

and write ten on the fulcrum, which is the given known in the problem. Then take
whichever number you wish, write it in one of the pans, and proceed according to what is

19If we use anachronistic notation and denote the unknown wealth by x, the problem is: x − 1
3 x − 1

4 x = 10. We

will use the notation: f (x) = x − 1
3 x − 1

4 x. Note that here the operation is linear. In general, the method works also
for affine functions, where f (x) = Ax + B.
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10

Fig. V-3-3.

mentioned in the problem, by subtracting its third and its quarter and taking the rest, com-
paring it with the ten on the fulcrum, i.e., inspect whether it is the same value, less or more.

· · ·

He says: If you err then write the error above the pan if it is superfluous, or
underneath, if it is deficient. Then place in the other pan any number you wish,
except for the first one you have chosen; follow the same procedure as you have
done in the first case. Then multiply the one error by the other integer. Inspect
whether the errors are superfluous or deficient. Subtract the smaller error from the
larger one and subtract the smaller multiplication from the larger one. Divide the
error between the multiplications by the remainder of the errors.

Commentary: if it did not occur that you have chosen the right number, but a different
one, which is the case most of the time—the other case [choosing the right number]
is rare—in any case, after you subtract one third and one quarter, the error in relation
to the ten on the fulcrum, will be either larger or smaller than it; this is what he meant by
“if you err.”

For example, you draw the scales as follows; take, for example, the number 36, write
it in one pan, subtract its third, 12, and its quarter, 9, altogether 21, and the remainder is
15. Compare it to the ten and there is an error, because there are five superfluous ones,
i.e., units. Write the five, which is the error, above the pan, because it is superfluous. If the
remainder were 8, being less than 10, you would write it beneath the pan. Then place any
number you wish on the other pan, except for the 36 that you have already chosen, e.g.,
48. Write it in the other pan, subtract its third, 16, and its quarter, 12, altogether 28, the
remainder is 20. Compare it to the ten on the fulcrum, there is an error here too, because
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Fig. V-3-4.

there are ten superfluous ones. Write it above the pan because it is also superfluous
[Fig. V-3-4].20

· · ·

Then multiply each error in each pan by the integer in the other, i.e., multiply the 5 above
the 36, which is the error in the first pan, by the integer in the other pan, 48, the result
is 240. Also, multiply the ten above the second pan, which is its error, by the other, it
becomes 360. 240 and 360 are called multiplications. This is the first procedure for the
case when the errors are above the pans.21

· · ·

He said: Then inspect whether both errors are larger than the ten in the pan, i.e.,
such as in the first example, or deficient, i.e., like in the second example.22 Then subtract
the smaller from the larger, i.e., the smaller of errors from the larger one, i.e., subtract
the smaller error, which is 5 in the first example, from ten, which is above the second
pan, and 5 remains. The smaller of multiplications refers to subtracting the smaller
multiplication, such as 240 in the first example, from the larger one, which is 360, and

20f (36) = 15 and f (48) = 20; f (36) − 10 = 5 and f (48) − 10 = 10.
2148 × (f (36) − 10) = 48 × 5 = 240; 36 × (f (48) − 10) = 36 × 10 = 360.
22This second example is omitted here.
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the remainder is 120. Divide the remaining part of the multiplication, which equals
120, by 5, the remainder of the errors. The result, 24, is the unknown sought number.23

· · ·

He said: If one of them is superfluous and the other is deficient, divide the sum
of the multiplications by the sum of the errors.24

· · ·

He says: If you wish, place in the second pan the first number or another one,
and subtract from it the part which is compared to what is above the fulcrum, then
multiply it by the integer in the first pan and multiply the error of the first by the
integer in the second pan. Then, if the error of the first pan is deficient, add the
multiplications. If it is larger, take the difference between them and divide it by the
part, i.e. the number, in the second pan.

Commentary: This is another method in the procedure of the scales in which you
take whichever number you wish and write in one pan, do with it as you have in the
first procedure, write this error above if it is superfluous, or below, if it is deficient.

We demonstrate it with an example: let there be ten on the fulcrum and place 36 in the
first pan. We follow the same procedure as before; the error, 5, will be above the pan.

· · ·

We then turn to the second pan and write 48 in it as we have done before. . . . If we
take 48 and subtract its third and its quarter, twenty is left and it is that term with which we
compare. In this procedure, we write the error between this number and the ten above the
fulcrum neither above nor below the pan, but we write the integer either above or below
as we wish. . . . Multiply this part by the other, which is 20, when the number written in the
pan is 48. If the first pan had 36, we would multiply 20 by 36, becoming 720. We multiply
5, which is the error above the first pan, by 48, and it becomes 240 [Fig. V-3-5]. Since
the error is above the pan, which is superfluous, we take the increment between the two
multiplications, i.e. we subtract 240 from 720, and the remainder is 480. We divide it by
20, which is called division by what is above the second pan, and the result is 24; it is the
desired solution25 and this is its form:

23The operation here is: 36×(f (48)−10)−48×(f (36)−10)
(f (48)−10)−(f (36)−10)

. This number solves the problem f (x) = 10. Indeed,
the ratio (48 − x) : (48 − 36) should be the same as the ratio (f (48) − f (x)) : (f (48) − f (36)) = (f (48) − 10) :
((f (48) − 10) − (f (36) − 10)). The value of x can now be derived by means of proportion theory.

24Since the author considers the absolute values of the errors f (a) − 10, the difference in the denominator has to
be replaced by a sum when one error is negative and the other is positive.

25Here we have the solution 36×f (48)−48×(f (36)−10)
f (48)

, which applies when f is linear (f (x) = Ax). This solution

retains its meaning even if we only have one sampling of f , in which case it reduces to 48×10
f (48)

, namely, to a simple
application of the Rule of Three in a single false position.
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The elements of algebra and their operations
Here are presented the algebraic terms (root or thing, square or estate, etc.). These terms
are presented as analogous to numbers and decimal ranks, but unknown algebraic terms are
carefully distinguished from known numbers, which could be roots and squares as well. The
discussion refers to the possibility of unknown algebraic terms that are not determined with
respect to each other (a root which is not the root of the given square, that is, referring to a
different unknown).

He said: The application of restoration26 is upon three species: numbers, things,
and estates. The things are the roots. The squares are the result of the root
multiplied by itself.

Commentary: As previously explained, the number has three ranks: units, tens, and
hundreds and all other [numbers] are composite by them. Also, in this science, ranks are
set which are numbers, roots and squares and the rest are formed by them. This is what
he meant when he said: the application of restoration is upon three species. Even though
there are many species, cubes, and others, here, the main aim of this science is to reduce
them all to these three species.

The three species are numbers, things, and estates. He said that the things are the
roots previously mentioned in the book, and in this science one names them things. The
estates are the result of the root multiplied by itself. In other words, when one multiplies
the root by itself, this multiplication is named an estate in this science, and it is the square
that was mentioned in the book.

The commentary of these two: he set [aside] the number because these two are also
named in this science by a different name, but the number is not. A complete commentary
about these three species is as follows: the numbers could be any number, whether units,

26“Restoration” is one of the elementary algebraic operations (al-jabr), that of adding a subtracted term to both
sides of an equation.
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tens, or hundreds, other ranks or their composition, either large or small, such as 5, 9, 11,
and 120, and in general, every number, either large or small. For this reason this rank is
named the number.

The roots are the roots of the squares. It is known that every number can be a root of
a square. . . . That number is a root to that square and for every number [it is the] same.
However, the number is called a number in itself and it is not called a root unless related to
a square. Therefore, the number given here is a number as such. The given root here is a
number which is a root extracted from a certain square and it does not have a determined
value. That is why it is called a thing, i.e., a certain thing among the numbers that is a root
to a certain square.

. . . There is no interest in a square [per se] in the Science of the Number but [rather] in
the result of the multiplication of a number by itself. For this reason, the given square here
is an unknown square and that’s why they named it an estate.

Also, the roots, that are called things, and the squares, that are called estates, are
always set in the problems as unknown. [As for] the numbers, there is no way to set them
as unknown, but only as known, since the number has no relation to others, such as the
root has with the square or the square has with the root, because the number, as I said,
is a number in itself, the root is a root to a square, and the square is a square to a root, in
the way of all [things which are] related.

This is the explanation of the three species, on which restoration acts.
The hundreds are formed by tens and units and the thousands are formed by hundreds,

tens are formed by units, and all the other ranks are formed by previous ranks. Also, in
this science, the squares are joined by the multiplication of the root by the root and are
called estates. The cube [is formed] by the multiplication of the root by an estate. If one
multiplies the root by a cube, it becomes of a different rank, called the estate of an estate,
it is the multiplication of an estate by an estate. If one multiplies an estate by a cube,
the result becomes of a different rank, called an estate-cube. A cube [multiplied] by a
cube becomes a cube-cube, and so on with the rest. The repetitions of estates and cubes
are called an estate-estate and a cube-cube-cube or their composition, an estate-estate-
cube, an estate-cube-cube and similarly [with] the rest. As numbers have ranks, so do
these [objects].

Just as numbers can be added, subtracted, multiplied, and divided, so can numbers,
roots, and squares. The other ranks are also added together, subtracted from one another,
multiplied and divided by each other. He says: the number, which is 5 and 7 added
together, equals what 8 and 4 add up to. He also says that roots are equal to a number,
or roots are equal to an estate, or roots and a square [equal to] a number and so on. . . .

There are 4 types of the number,27 the first of which is an isolated number, such as 5,
30 or others, and it is called integer. Also in this science, we find a root by itself or an
estate and the term in which one of these is found is called integer.

27The following categorization does not appear in the Talkhı̄s.. The four types are: whole terms (e.g., a number, a
root, or a square); connected terms (sums whose parts are not related, that is, are not of the same kind and cannot form
a ratio—e.g., numbers counting different kinds of objects, or squares and roots of different unknowns); added terms
(e.g., sums of numbers of the same kind, roots and squares of the same unknown); and subtracted terms (differences
of numbers or algebraic terms).
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The second type refers to having two numbers or more, where each stands by itself,
such as 4 and 5 or 8 and 12, etc., such that one number is not related to the other, and it
is called connected. Similarly, in this science it is said that a term has, for example, a root,
a square and a cube, and each one stands by itself; i.e., the roots are not of the squares
and the squares are not of the cubes. Rather, each stands by itself and is added to the
other and is also called a connected term. This is scarcely encountered in this science,
unless within numbers. . . .

The third: when he says, for example, one and a quarter and one and a half, where
the quarter is related to one. So is one half, because one quarter is one quarter of the
one and this is called the additive, because the part is added to the integer. Also, in this
science, it is said that a term has squares and roots, i.e., an estate and things, or a
cube and an estate which are related, meaning that the things are things of the estate
and the estate is an estate of the cube and it is called additive. Also, an estate plus a
number and a thing plus a number, are called additive even though they are not related or
connected.

The fourth: as he says, in “number ten minus 2” or “30 minus 5” or “one minus one
third,” where it is called deficient or subtractive, so it is in this science, it is said that a
term has an estate less a thing, or a cube less a square, which is called deficient or
subtractive.

Multiplication and division of algebraic terms
The fragment below comes after a systematic treatment of adding and subtracting compound
algebraic terms and a discussion of multiplying binomial sums and differences of algebraic
terms. Each algebraic term is assigned a degree (1 for root, 2 for square, etc.), and the degree
of the product is the sum of the degrees of the multiplied terms. A notation that places the
degree above the coefficient (e.g., 2 with superscript 3 for “2 cubes”) is introduced but is not
actually put to use. These operations are presented as arithmetical operations in their own
right, but their discussion is interspersed with applications to simplifying equations (adding
and subtracting terms and reducing the degree of an equation through division by the term of
least degree).

Whenever we wish to multiply ranks by ranks, the custom is to write them in two lines,
one beneath the other. The degrees of the superior line are above and the degrees of the
inferior line are beneath. For example, you wish to multiply 3 cubes and 7 estates and ten
things by 9 cubes and six estates and 5 things. Write them in this form:

1 2 3
10 7 3
5 6 9
1 2 3

Then, we actually write three lines. In the middle one write the degrees by order,
i.e., start by the larger and end by the smaller. In the lower line, write the outcome
of the multiplication of the additives, and in the upper [line, write] the outcome of the
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multiplication of the subtractives, each below the degree which corresponds to it or above
it in this form:

0 1 2 3 4 5 6
50 35 15 18 27

60 42 63
90

50 95 147 81 27

Start with the degree 6, as it is the biggest in this multiplication. At the [left] end, we
write a zero, as this is appropriate when there is a number in the multiplication. Then,
multiply 3 by 9, and the outcome is 27. Add the degrees, 6, and this is why we write the
27 under the 6. Then, multiply 3 by 6, and it becomes 18. Its degree is 5, and that is why
we write it under the 5. Then, multiply 3 by 5, it becomes 15, and its degree is 4. That is
why we write it under the 4. All multiplications of the 3 are hereby ended.

We return to the 7. Multiply it by 9, it becomes 63 and adding its degrees it becomes 5.
That is why we write it under the 5. Then multiply 7 by 6. It is 42 and their added degrees
are 4. That is why we write it under the 4. Then, multiply 7 by 5, it is 35 and its degree is
3. Write it under the 3 and the multiplication of the 7 is [hereby] ended.

Return to the 10 and multiply it by 9. It is 90 and its degree is 4. That is why we write
the 90 under the 4. Multiply 10 by 6, it is 60 and its degree is 3. Write the 60 under the
3, then, multiply 10 by 5. It becomes 50 and its degree is 2. Write the 50 under the 2.
Then, add each species with each other and the result is 27 square-square-estates plus
81 square-cubes plus 147 square-estates plus 95 cubes plus 50 estates. Write them each
under its own species.

Another example: we wish to multiply 2 estates less 3 things by 3 cubes less 4 estates
in this form:

2 1
2 Less 3
3 Less 4
3 2

Multiply 2 by 3. They are [the multiplication of] an additive by an additive, or say an
integer by an integer. It is 6 and the addition of their degrees is 5. That is why we write it
underneath the 5 [see table below]. Then, multiply 2 by less 4, and it becomes subtractive
8. It is subtractive so we write it above the 4, as the addition of their degrees results in 4.
Then, multiply less 3 by 3, it becomes subtractive 9 and its degree is 4. That is why we
write it above the 4 as well. . . . Then, multiply less 3 by less 4 as if the word less were
not there. It is 12 and its degree is 3. That is why we write it under the 3. Then, add each
species with its own and the outcome is 6 cube-estates less 17 square-estates and 12
additive cubes. We write them below each other in correspondence to their species.

9
8

3 4 5
12 6
12 Less 17 6
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· · ·

He said: when one divides a species of these species by its inferior, subtract the
degree of the divisor from the degree of the divided term and the rest is the degree
of the outcome of the division.

Commentary: it is already known that the lower of the species that has a degree is the
root. Next, the greater [species] is the square, i.e., the estate, and after it the cube, and so
on. One knows in the division of integers that the division has two forms: first, the division
of a large number by a small number, or express it as “a superior number [divided] by an
integer number,” and this is called simple division. The second [division] is the division of
a small number by a large number and [the former] is called by the denomination [of the
latter].

The second [division] is not commonly found in these chapters. One knows this
from the condition that the writer set here about the knowledge of the outcome of the
division, by subtracting from the degree of the divided term the degree of the divisor. This
necessitates that the degree of the divisor is smaller than the degree of the divided term.
Also, the author tells us next not to divide the lower of the species by the superior. His
instructions are that when dividing integers, it is a number by a number. However, the
divided term is [of] superior [degree] and the divisor [is of] inferior [degree].

For example, one wishes to divide ten estates by 5 roots. Divide ten by 5, as with
integers, and the outcome of the division is 2. In order to know [of] what [species] this 2 is,
subtract the degree of the divisor, roots with degree of 1, from the degree of the divided
term, which is estates of degree 2. 1 remains, and it is the degree of roots. Here, the 2,
the result of the division, is 2 roots. Then, if you wish, [you can] test the division from what
you already know, by multiplying the result by the divisor, and the outcome is the divided
term. Also, in this example, multiply the outcome, 2 roots, by 5 roots, the divisor, and it
becomes ten estates with a degree of 2.

· · ·

He said: when dividing one species by the same one, the outcome is a number.
Commentary: when dividing roots by roots and subtracting the degree of the divisor

from the degree of the divided term, nothing remains. Thus, the outcome of the division
is a number without a degree. For example, when ten roots are divided by five roots, the
outcome of the division is 2 and they are zuzim,28 because the degree of the divisor is
1, and so is the degree of the degree of the divided, a root. When subtracting 1 from 1,
nothing remains. . . .

He said: when dividing one of these species by a number, the outcome is of the
same species.

Commentary: as the number has no degree, when dividing any of these species by it,
the divisor, which is the number, has no degree to subtract from the degree of the divided
term. Thus, the degree of the divided term remains in its place. For example, when 12
cubes are divided by 4 zuzim, the outcome is 3 cubes.

28A Hebrew coin denomination.
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He said: if the divided term contains subtractive terms, divide each term, in both
the subtractive and the subtrahend, by the divisor, and then subtract the outcomes.

Commentary: shortly the author mentions that no species containing subtractives can
divide. However, the divided term, even though it is subtractive, can be divided. He gives
the method here, [i.e.,] dividing the subtractive alone by the divisor and dividing the term
subtracted from as well. Then, subtract the outcome of the first from the outcome of the
second. The remainder is the answer being sought.

An example here: you wish to divide 4 estates less 6 roots by two roots. Divide the
subtractive, 6 roots, by the divisor, 2 roots, and the outcome is 3 zuzim. Then, divide the
part from which the subtractives are subtracted, 4 estates, by the divisor, which is 2 roots[,
producing 2 roots]. One subtracts the first outcome, 3 zuzim, from the second outcome, 2
roots, and the final outcome is 2 roots less 3 zuzim, which is the result of the division by
its divisor, which is 2 roots. . . .

He said: one shall not divide by a subtractive.
Commentary: the divided is not subtractive. The reason being is that you already know

that the definition of division, according to what the author wrote in the chapter on division,
is the decomposition of the divided term into equal parts, and their number is reflected by
the divisor in units. I have already explained this definition there. It follows from it that the
knowledge of the units of the divisor and all these species in these chapters are unknown.
When the species is subtractive, we do not know what is left of its subtracted term for us
to divide by this remainder.

For example, if the divisor is a square less 2 roots, when we subtract two roots from the
square, then we will not know how many roots are left in a square to divide by it. Similarly
in all species, and this is explained.

He said: This completes what we wished to know. Thank God, may His name be
magnified and blessed.

Commentary: He bestowed praise upon the Almighty, may His name be magnified,
who helped him complete his mission as the erudite authors rejoice upon the completion
of their composition and they thank the Almighty, may His name be blessed, who favored
them and helped them make their name respected. We praise the exalted God of Israel
by every blessing and praising, who helped us with its explanation. He will help us with
His mercy, with everything of the honor of His name. He will save us. He will tell about our
sins for his great and fearful name, may His name be blessed and magnified. Amen.

· · ·

The commentator said: I have also seen [it appropriate] to write in this chapter a
supplement [written] by their [i.e., Arab] scholars in this science, as I have seen it to be
obligatory and useful in all species of restoration.

One already knows what was mentioned about division in [the part about] restoration,
[i.e.,] that one does not divide by a subtractive [term] and also, that a lower species does
not divide an upper species. It is known that there are instances in the problems where it
is required that the lower divide the upper and, also, divide by a subtractive.

Therefore, when this is given in the problem, one has to apply this from the known rule,
because when one multiplies the outcome of the division by the divisor, the outcome of
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the multiplication is the divided term. Therefore, multiply what was given from the result
of the division by its divisor. The outcome of the multiplication is equal to the divided term.

The example mentioned in the third problem [that is, split 10 into two numbers, such
that one divided by the other is 4], in which he said: when one divides the one part of the
ten by the other, the outcome of the division is 4, because, if we let the one part [be] a
thing and the other [be] ten less a thing, then this is a division by a subtractive . . . and it
does not divide. Indeed, he states that the outcome of the division is 4. Therefore, when
multiplying the 4 by ten less a thing, the divisor, the outcome is 40 less 4 things and it
equals the divided term. When one completes and opposes,29 it becomes 40 equals 5
things. When one restores, 8 is obtained, and it is the one part of ten and the other is
equal to two.30 Use it in analogy.

Sometimes, there are instances in such problems, where you are not able to determine
the solution by this rule. Therefore, you need to know a different rule. In the example here,
in which one asks: Ten, partition it into two parts, divide each one by the other and add
the outcome of the two divisions. The sum is 2 and one sixth.31

If one lets the one part [be] a thing and the other be ten less a thing, then there is
no way to divide by each other, because the one is division of a lower by upper and the
second is a division by a subtractive, as mentioned. There is no way to solve it by the
mentioned rule because the given in the problem is the outcome of the two divisions,
added together. We do not know what will come out of each division in order to multiply it
by its divisor, to give the divided term.

Therefore, you need here a different rule. The rule is that for all the numbers [in the
problem], divided by one another, i.e., by each other, add the outcomes of the two divisions
and keep them. Then, multiply each of those numbers by itself, add the outcomes, and
then it becomes the multiplication of one of the numbers by the other and the kept
outcome.

An example of this rule: 4 and 6. Divide the six by the 4, and from the division we obtain
one and a half. Divide the 4 by the six, the outcome is 4 sixths. Add the latter with the one
and half, it becomes 2 and one sixth, which is the outcome of the divisions. Keep it and
multiply 4 by itself, and it becomes 16. [Multiply] six by itself, and it becomes 36. Add 16
to 36, and it becomes 52. Also, when multiplying 4 by six, it becomes 24. Multiply it by
the kept 2 and one sixth, this is 52. And this equals the sum of the two multiplications,
because it is also 52.32

After knowing this rule, return to the problem that he set. He says that when one divides
the one part of the ten, which is a thing, by the other part, which is ten minus a thing, divide
the ten less a thing by the thing, add the outcomes of the two divisions, and the outcome
is 2 and one sixth. Do as mentioned in the rule of multiplication. Multiply the thing by itself,

29Opposition is the algebraic operation of subtracting equal terms present in both sides of an equation
(al-muqābala).

30The problem is to split 10 into two parts, x and 10 − x, such that their quotient is 4. Instead of the inadmissible
division x

10−x = 4, the commentator introduces the equation x = 4 (10 − x) to obtain x = 8.
31The problem is: x

10−x + 10−x
x = 2 1

6 , which includes inadmissible divisions. To solve it, rearrange it as:

x2 + (10 − x)2 = 2 1
6 x (10 − x).

32 4
6 + 6

4 = 2 1
6 . This is equivalent to 4 × 4 + 6 × 6 = 4 × 6 × 2 1

6 .
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and it becomes an estate, multiply the ten less a thing by itself, the result is 100 minus
20 things and an estate. Add it with the estate which results from the multiplication of the
thing by itself, and it becomes 100 less 20 things plus 2 estates. Then, multiply the ten
less a thing by a thing, and obtain 10 things minus an estate. Multiply it by 2 and one
sixth, as [previously] mentioned to be the outcome of the two divisions. The outcome of
the multiplication is 21 things and two thirds of a thing less 2 estates plus one sixth [of an
estate] equals the 100 less 20 things and 2 estates.

When one proceeds by restoration and opposition, one obtains an estate and 24 zuzim
equal 10 things [we omit the derivation of the last equality from the previous one]. This
is the fifth type of the six types of restoration. Do as is written there, by taking half the
number of roots, 5, squaring it, and it becomes 25. Subtract from it the number of zuzim,
24 and 1 is left. Take its root, which is also 1, and subtract it from the number of half the
roots, 5. The remainder is four, and it is the one part of the ten. The other one is six. Also,
if one adds the one to half the number of estates it becomes 6; it is one part of the ten
and the other is 4.
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