Communication Methods

What is Communication?

Communication involves sharing ideas, information, soundsiages. Communicating
over a distance requires three stages: encoding, trssiemand decoding. For example,
1500 years ago the Incas, a highly organized, methodical cultilv@ut any written
language, used quipus to communicate numeric informatioguigu was a method of
encoding numbers for record keeping that involved arcatiiset of knots tied into
colored cotton cords that were connected in specifiswdye knots represented
numbers stored in base ten, with the absence oftardioating zero so that the user
could distinguish, for example, between 48 and 408. Runmarsmitted the information
by carrying the quipu from one location to another. Whoaeeded to look up the
record, studied the knots and decoded the information.

Methods of encoding/decoding and transmission have addamth technology. We
now can encode/decode with binary numbers and transnategtricity, radio waves
and fiber-optic cables. All of these technologies regmathematics to make them

viable.

The Challenge of Long Distance Communication

How does information get encoded and decoded?

How can we transmit the information fast enough tkamiapractical?
How can we send information without data loss orugtion?

How can we send information securely?
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We will discuss the first three of these in detdihe answer to the fourth question
involves cryptography, a deep and ancient subject with amezegt mathematical
advances whose treatment is beyond the scope of ticie atronically it is Number
Theory, the most artistic, pure, abstract and thexaddbranch of mathematics that
provided us with a method of encryption for sending ouricoadd numbers securely
over the Internet. Interested readers are refeor&ingh.

The Encoding of Information — Analog Versus Digital

There are two paradigms for encoding information. Witil@gencoding, information is
changed continuously from one physical form to anotker.example, we can encode
sound into the vibrations of a needle, and store it ascd@s on a vinyl disk. A
phonograph decodes this information by reversing the prodéssdisadvantages of
analog encoding are noise and inefficiency in the enggarocess. Telegraphs, radio,
television, cameras, tape recorders and telephonesallergginally analog inventions.
Today, there are digital versions of all of theseer€hs a great deal of mathematics
involved with analog encoding, including Fourier transforina,it is beyond the scope
of this article. The advanced reader may refer to Lathi



With digital encoding, we transform information int@@guence of numbers. Written
language can be encoded by using a specific number for @wepye symbol in the
language’s alphabet. A picture can be encoded by splitpirige image into tiny pieces
and using numbers to represent the color, intensity andomosf each piece. Sound can
be encoded by splitting up the soundtrack into small peieesising numbers to
represent the frequency, intensity and quality of the soueddch tiny fraction of a
second. A similar process can be used with video. @DMD players are themselves
digital devices.

Compared to analog encoding, digital encoding alwaysesiggormation, but if you
take enough samples, then the missing pieces of infamiatbetween are not
discernable. It is like looking outside through a scid®or. If the screen is very fine,
you barely notice its presence, even though it realgioa substantial percentage of
your view. Of course, if you do not take enough samplasybe may end up with
fuzzy pictures, choppy recordings, or missing information.

Binary Numbers and Digital Encoding

It is easiest physically to build transmission devicas slend and receive only two
different types of signals. Smoke signals and Mooske are early examples of this.
Today, electricity can transmit either a high orw imltage, where high represents one
and low represents zero. Therefore we try to encodennaition using only zeros and
ones.

A sequence of digits containing just zeros and onesledcalbinary numberFor
example, here are the base ten numbers 0 through 9 r@presebinary.

0 1 10 11 100 101 110 111 1000 1001

We can show 0 and 1 directly but since there is no syfobélvo, we create a new
column which we think of as the two’s column, writingotas 10. We represent every
subsequent number by adding one to the previous number andgaormew columns
whenever necessary. This is exactly like base tgnyb carry when we reach two
instead of ten. In the binary system we have columatsépresent increasing powers of
two: one, two, four, eight ... etc. The binary number 1000100drefore represents 1 +
2+ 16 + 256 = 275. Every base ten number can be encodedbirtary number and
vice versa.

ASCII — The Binary Encoding of Text

How can we use binary numbers to transmit text? AS@ibding, (American Standard
Code for Information Interchange published in 1968, pronouaskeg associates each
character that appears on a keyboard with a unique binargrssxaf length eight called
a byte. These characters include all upper and loweretéses, digits, various special
symbols and punctuation marks. For example, the AGlie of ‘A’ is 01000001; the



ASCII value of ‘B’ is 01000010; and the ASCII value of ‘5’(06110101. Each byte
consisting of eight binary digits (bits for short) care & = 256 different values, more
than enough to store the various symbols on a keyb@2md.bit can store two values, 0
or 1. Two bits can store 00, 01, 10 or 11. With three bitsamestore eight possible
sequences. With each new bit, we double the number sibges, by adding a zero in
front of all the previous possibilities and by adding a ohleis implies thah bits can
store2" different configurations.

Unicode — The Binary Encoding of Written Characters

ASCI!I is fine for English but falls short when appligdour more diverse worldwide
collection of languages and symbols. A more recent agvienwritten encoding is
Unicode. Unicode is a universal, efficient, uniform and ungudus way to encode the
world’s written languages. It includes symbols for HehrArabic and Chinese as well
hundreds of standard business symbols. Unicode is a apdast that extends ASCII.
It uses two bytes instead of one, or 16 bits instead bf.eibhis gives Unicode the
ability to encode a total of2= 65536 different symbols.

Huffman Encoding — Compression

Compression is a way to shorten our messages withginglany information, thereby
reducing the size and transmission speed of the mes#¥&g@ormally encode each
character of text with one byte. The inefficiencyhat aqis encoded with the same
eight bits as &and yet the two letters occur with a different expeéteguency.
Huffman encoding takes into account the relative freqesrnzi the information being
encoded, and can create a compression factor of up to 90%.

For example, a message contain€$36 z's,5q’s, 18u’s, 72s’s,58a’s, 20b’'s and 28
m’s. ASCII encoding requires eight bits per character, or 8>¢93+18+72+58+20+28)
= 2400. Normal flat binary encoding will require three pis character because there
are eight different characters. This gives a tot&8>¢93+6+5+18+72+58+20+28) = 900
bits.

Huffman assigns the encoding in the following way11, z=10001, g=10000, u=1001,
s=01, a=00, b=1010, m=1011This gives a total message size of (2x93 + 5x6 + 5x5 +
4x18 + 2x72 + 2x58 + 4x20 + 4%x28) = 765, a 15% compression. Thidiegas done
with a greedy algorithm that builds a tieeorder to determine the optimal encoding.
The algorithm starts with a separate single node treeaich character labeled by its
frequency. It repeatedly combines the two subtreesthatlsmallest weights, labeling
the new tree with the sum of the labels on the tlddrees, until there is just one tree.
The initial trees and the final tree are shown below.
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Note that the decoding of a Huffman encoding is unambigbhec&use no encoded
character is a prefix of another. That means tlgatan keep reading characters until a
match occurs, decode it and continue.

Morse code is a form of compression in analog encotli@iguses short and long signals
to represent letters. The more commonly transmittéer&tise shorter sequences while
the less commonly transmitted letters use longer segsience



Error Correction — Hamming Codes

Error detection and correction allows us to ensureitifi@atmation is transmitted without
loss or corruption. When we transmit digital inforroatit is easy for some of the bits to
be corrupted because of lightning storms, surges in powelysgpy lenses and
undependable transmission lines. How can we make surdé¢hactual data transmitted
IS received?

The trick is to add extra bits so that only some ok#puences are legal messages. This
increases the size of the message and thereby slowstdewansmission time, but
allows more accurate transmission. For exampléharcase of four-bit messages, the
sender can simply tack on an extra copy of the foumtmtising eight bits total. The
receiver compares the two copies and requests a retsaimmmif the two copies differ.

For example, the sequence 10001000 is legal but 10001001 would require a
retransmission. The downside is that we cannot méterwhich was the correct four-bit
message.

There are strategies, however, that correct erroogratically without any need for
retransmission. Assume that our message is brokemagroups of four bits and we
want to correct any single bit error in a given group.sTime we add on two extra
copies of the four bits making twelve bits total. Onlgsences of twelve bits with three
identical copies of the first four bits are legal. fhare2'? possible 12-bit messages and
only 2* are legal. If there is a single difference betweentewyof the three copies then
we know that a single error has occurred and we catriecbe the same as the other two
identical copies.

Why three copies? The three copies allow us to pinpdiete the error occurred. The
idea is thany two distinct legal messages must differ by at least thieeHence an
illegal 12-bit message that occurred due to a transmisgionadra single bit, must have
come from a unique original legal message. The decodingaimbiguous. For
example, if 100011001000 is received, then the correct message is 100010241000
there is an error in the sixth bit transmitted.

What if more than one error occurs? If two or mofeetBnces exist, we just ask for a
retransmission. What if many errors occur resultinghance in a, nonetheless, legal
message? That would be undetectable. We set up this sttheareect only one error
per four-bit sequence. We could correct more than a single if we were willing to
add more redundant information and incur a proportionatejgiancrease in message
and transmission time.

There is a more efficient way to correct singlegoiors called Hamming codes. The
method is elegant, practical, but complex. For ameggtion of why it works see
Hamming’s book. Le#i+r be the total number of bits sent. Hamming realizeddaaeh

of the2* legal messages must hater single-error illegal messages that can be created
from it, and that ifany two distinct legal messages must differ by at least thre¢hats

all of these illegal messages must be mutually distifbis means that we need at least



(4+r)x 24 distinct illegal messages agtidistinct legal messages, totaligrr+1)x 24
distinct messages. Since we have ex&lydistinct binary sequences, we n&étl >
(4+r+1)x 2% The reader can check thanust be at least three.

Hamming showed how to achieve this lower bound, thereby exigilbtiie smallest
possible size messages (seven) to do single error-torren four-bit data messages.
Here is how Hamming encodes four bits of data into sevele allowing for the
correction of a single error. He writes his four daita in positions 3, 5, 6 and 7. Then
he computes the bits in positions 1, 2 and 4 depending omithigen of ones in a
particular set of the other positions. These extsadi called parity bits. He sets a
given parity bit to zero if the number of ones in tperapriate positions is even, and to
one if the number of ones is odd. The sets of positionthe parity bits in positions 1, 2
and 4 are {3,5,7}, {3,6,7}, and {5,6,7} respectively.

For example, if the message is: 0011, then we have _ 0 THd {3,5,7} set gives two
one’s, an even number so we set position one equalto The {3,6,7} set is similar so
position two is also zero. The {5,6,7} set has an odd nuib@nes so the fourth
position is one. The final encoded seven bits is: 0001111.

To decode Hamming’s scheme, we re-compute the parityrgts ghey match up to
what was received, we have a legal message. Ifdbwey match up then the sum of the
positions with incorrect parity gives the position of sinegle bit error. For example, if
0001111 is corrupted into 0001101, then the parity bit for postenis correct, while
those for positions two and four are incorrect. Thesins that the error is in position
2+4 = 6. The efficiency of this method makes it thedzath

The Communication Revolution

Just 150 years ago, a routine telephone call was nsibpgmsamages were delivered in
person, and newspapers brought headlines of informatiomthahave been days old.
There was no TV or radio coverage of world eventser&hvas no world wide web for
the world to share its collective knowledge.

Today we take for granted the ability to communicate withbusiness partners,
colleagues, friends, and loved ones over long distaammgsit any time of the day. Via
phone calls, e-mail, or fax, we transmit picturesce@r text to almost anyone and
anywhere at anytime. Communication has become fatteaper and more
commonplace. Mathematics is used to encode, traaswitlecode data in a practical
and secure way. Mathematics drives the new technalodynakes the communication
revolution possible.
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Glossary

Quipu — A knotted cord used by the Incas and other culturextmle numeric
information.

Tree — A collection of dots with edges connecting theah lave no looping paths.
Digital Encoding — Encoding information into a seriésliscrete numbers.

Analog Encoding — Encoding information with continuous qigsti



