
 1 

Communication Methods 
 
 

What is Communication? 
 
Communication involves sharing ideas, information, sounds or images.  Communicating 
over a distance requires three stages: encoding, transmission and decoding.  For example, 
1500 years ago the Incas, a highly organized, methodical culture without any written 
language, used quipus to communicate numeric information.  A quipu was a method of 
encoding numbers for record keeping that involved an intricate set of knots tied into 
colored cotton cords that were connected in specific ways.  The knots represented 
numbers stored in base ten, with the absence of a knot indicating zero so that the user 
could distinguish, for example, between 48 and 408.  Runners transmitted the information 
by carrying the quipu from one location to another.  Whoever needed to look up the 
record, studied the knots and decoded the information. 
 
Methods of encoding/decoding and transmission have advanced with technology.  We 
now can encode/decode with binary numbers and transmit via electricity, radio waves 
and fiber-optic cables.  All of these technologies require mathematics to make them 
viable. 
 

The Challenge of Long Distance Communication 
 

1. How does information get encoded and decoded? 
2. How can we transmit the information fast enough to make it practical?   
3. How can we send information without data loss or corruption?   
4. How can we send information securely? 

 
We will discuss the first three of these in detail.  The answer to the fourth question 
involves cryptography, a deep and ancient subject with amazing recent mathematical 
advances whose treatment is beyond the scope of this article.  Ironically it is Number 
Theory, the most artistic, pure, abstract and theoretical branch of mathematics that 
provided us with a method of encryption for sending our credit card numbers securely 
over the Internet.  Interested readers are referred to Singh. 
 

The Encoding of Information – Analog Versus Digital 
 
There are two paradigms for encoding information.  With analog encoding, information is 
changed continuously from one physical form to another.  For example, we can encode 
sound into the vibrations of a needle, and store it as scratches on a vinyl disk.  A 
phonograph decodes this information by reversing the process.  The disadvantages of 
analog encoding are noise and inefficiency in the encoding process.  Telegraphs, radio, 
television, cameras, tape recorders and telephones were all originally analog inventions.  
Today, there are digital versions of all of these.  There is a great deal of mathematics 
involved with analog encoding, including Fourier transforms, but it is beyond the scope 
of this article.  The advanced reader may refer to Lathi. 
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With digital encoding, we transform information into a sequence of numbers.  Written 
language can be encoded by using a specific number for every unique symbol in the 
language’s alphabet.  A picture can be encoded by splitting up the image into tiny pieces 
and using numbers to represent the color, intensity and position of each piece.  Sound can 
be encoded by splitting up the soundtrack into small pieces and using numbers to 
represent the frequency, intensity and quality of the sound at each tiny fraction of a 
second.  A similar process can be used with video.  CD and DVD players are themselves 
digital devices. 
 
Compared to analog encoding, digital encoding always misses information, but if you 
take enough samples, then the missing pieces of information in between are not 
discernable. It is like looking outside through a screen door.  If the screen is very fine, 
you barely notice its presence, even though it really covers a substantial percentage of 
your view.  Of course, if you do not take enough samples then you may end up with 
fuzzy pictures, choppy recordings, or missing information. 
 

Binary Numbers and Digital Encoding 
 
It is easiest physically to build transmission devices that send and receive only two 
different types of signals.  Smoke signals and Morse code are early examples of this.  
Today, electricity can transmit either a high or a low voltage, where high represents one 
and low represents zero.  Therefore we try to encode information using only zeros and 
ones.     
 
A sequence of digits containing just zeros and ones is called a binary number.  For 
example, here are the base ten numbers 0 through 9 represented in binary. 
 
0 1 10 11 100 101 110 111 1000 1001 
 
We can show 0 and 1 directly but since there is no symbol for two, we create a new 
column which we think of as the two’s column, writing two as 10.  We represent every 
subsequent number by adding one to the previous number and carrying to new columns 
whenever necessary.  This is exactly like base ten, but we carry when we reach two 
instead of ten.  In the binary system we have columns that represent increasing powers of 
two: one, two, four, eight …  etc.  The binary number 100010011 therefore represents 1 + 
2 + 16 + 256 = 275.  Every base ten number can be encoded into a binary number and 
vice versa. 
 

ASCII – The Binary Encoding of Text 
 
How can we use binary numbers to transmit text?  ASCII encoding, (American Standard 
Code for Information Interchange published in 1968, pronounced askee) associates each 
character that appears on a keyboard with a unique binary sequence of length eight called 
a byte.  These characters include all upper and lower case letters, digits, various special 
symbols and punctuation marks.  For example, the ASCII value of ‘A’ is 01000001; the 
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ASCII value of ‘B’ is 01000010; and the ASCII value of ‘5’ is 00110101.  Each byte 
consisting of eight binary digits (bits for short) can store 28 = 256 different values, more 
than enough to store the various symbols on a keyboard.  One bit can store two values, 0 
or 1.  Two bits can store 00, 01, 10 or 11.  With three bits we can store eight possible 
sequences.  With each new bit, we double the number of possibilities, by adding a zero in 
front of all the previous possibilities and by adding a one.  This implies that n bits can 
store 2n different configurations. 
 

Unicode – The Binary Encoding of Written Characters 
 
ASCII is fine for English but falls short when applied to our more diverse worldwide 
collection of languages and symbols.  A more recent advance in written encoding is 
Unicode.  Unicode is a universal, efficient, uniform and unambiguous way to encode the 
world’s written languages.  It includes symbols for Hebrew, Arabic and Chinese as well 
hundreds of standard business symbols.  Unicode is a new standard that extends ASCII.  
It uses two bytes instead of one, or 16 bits instead of eight.  This gives Unicode the 
ability to encode a total of 216 = 65536 different symbols. 
 
 

Huffman Encoding – Compression 
 
Compression is a way to shorten our messages without losing any information, thereby 
reducing the size and transmission speed of the message.  We normally encode each 
character of text with one byte.  The inefficiency is that a q is encoded with the same 
eight bits as a t and yet the two letters occur with a different expected frequency.  
Huffman encoding takes into account the relative frequencies of the information being 
encoded, and can create a compression factor of up to 90%. 
 
For example, a message contains 93 e’s, 6 z’s, 5 q’s, 18 u’s, 72 s’s, 58 a’s, 20 b’s and 28 
m’s.  ASCII encoding requires eight bits per character, or 8×(93+6+5+18+72+58+20+28) 
= 2400.  Normal flat binary encoding will require three bits per character because there 
are eight different characters.  This gives a total of 3×(93+6+5+18+72+58+20+28) = 900 
bits.   
 
Huffman assigns the encoding in the following way:  e=11, z=10001, q=10000, u=1001, 
s=01, a=00, b=1010, m=1011.  This gives a total message size of (2×93 + 5×6 + 5×5 + 
4×18 + 2×72 + 2×58 + 4×20 + 4×28) = 765, a 15% compression.  This encoding is done 
with a greedy algorithm that builds a tree in order to determine the optimal encoding.  
The algorithm starts with a separate single node tree for each character labeled by its 
frequency.  It repeatedly combines the two subtrees with the smallest weights, labeling 
the new tree with the sum of the labels on the two old trees, until there is just one tree.  
The initial trees and the final tree are shown below. 
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0 1 0 1

0 1

 
 
 
Note that the decoding of a Huffman encoding is unambiguous because no encoded 
character is a prefix of another.  That means that we can keep reading characters until a 
match occurs, decode it and continue. 
 
Morse code is a form of compression in analog encoding that uses short and long signals 
to represent letters.  The more commonly transmitted letters use shorter sequences while 
the less commonly transmitted letters use longer sequences. 
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Error Correction – Hamming Codes 
 
Error detection and correction allows us to ensure that information is transmitted without 
loss or corruption.  When we transmit digital information it is easy for some of the bits to 
be corrupted because of lightning storms, surges in power supply, dirty lenses and 
undependable transmission lines.  How can we make sure that the actual data transmitted 
is received? 
 
The trick is to add extra bits so that only some of the sequences are legal messages. This 
increases the size of the message and thereby slows down the transmission time, but 
allows more accurate transmission.  For example, in the case of four-bit messages, the 
sender can simply tack on an extra copy of the four bits making eight bits total.  The 
receiver compares the two copies and requests a retransmission if the two copies differ.  
For example, the sequence 10001000 is legal but 10001001 would require a 
retransmission.  The downside is that we cannot determine which was the correct four-bit 
message.   
 
There are strategies, however, that correct errors automatically without any need for 
retransmission.  Assume that our message is broken up into groups of four bits and we 
want to correct any single bit error in a given group.  This time we add on two extra 
copies of the four bits making twelve bits total.  Only sequences of twelve bits with three 
identical copies of the first four bits are legal.  There are 212 possible 12-bit messages and 
only 24 are legal.  If there is a single difference between any two of the three copies then 
we know that a single error has occurred and we correct it to be the same as the other two 
identical copies. 
  
Why three copies?  The three copies allow us to pinpoint where the error occurred.  The 
idea is that any two distinct legal messages must differ by at least three bits.  Hence an 
illegal 12-bit message that occurred due to a transmission error of a single bit, must have 
come from a unique original legal message.  The decoding is unambiguous.  For 
example, if 100011001000 is received, then the correct message is 100010001000 and 
there is an error in the sixth bit transmitted. 
 
What if more than one error occurs?  If two or more differences exist, we just ask for a 
retransmission.  What if many errors occur resulting by chance in a, nonetheless, legal 
message?  That would be undetectable.  We set up this scheme to correct only one error 
per four-bit sequence.  We could correct more than a single error if we were willing to 
add more redundant information and incur a proportionately larger increase in message 
and transmission time. 
 
There is a more efficient way to correct single bit errors called Hamming codes.  The 
method is elegant, practical, but complex.  For an explanation of why it works see 
Hamming’s book.  Let 4+r be the total number of bits sent.  Hamming realized that each 
of the 24 legal messages must have 4+r single-error illegal messages that can be created 
from it, and that if any two distinct legal messages must differ by at least three bits, then 
all of these illegal messages must be mutually distinct.  This means that we need at least 



 6 

(4+r)× 24 distinct illegal messages and 24 distinct legal messages, totaling (4+r+1)× 2 4 
distinct messages.  Since we have exactly 24+r distinct binary sequences, we need 24+r ≥ 
(4+r+1)× 2 4.  The reader can check that r must be at least three.   
 
Hamming showed how to achieve this lower bound, thereby exhibiting the smallest 
possible size messages (seven) to do single error-correction on four-bit data messages.  
Here is how Hamming encodes four bits of data into seven while allowing for the 
correction of a single error.  He writes his four data bits in positions 3, 5, 6 and 7.  Then 
he computes the bits in positions 1, 2 and 4 depending on the number of ones in a 
particular set of the other positions.  These extra bits are called parity bits.  He sets a 
given parity bit to zero if the number of ones in the appropriate positions is even, and to 
one if the number of ones is odd.  The sets of positions for the parity bits in positions 1, 2 
and 4 are {3,5,7}, {3,6,7}, and {5,6,7} respectively.    
 
For example, if the message is: 0011, then we have _ _0_111.   The {3,5,7} set gives two 
one’s, an even number so we set position one equal to zero.  The {3,6,7} set is similar so 
position two is also zero.  The {5,6,7} set has an odd number of ones so the fourth 
position is one.  The final encoded seven bits is: 0001111.   
 
To decode Hamming’s scheme, we re-compute the parity bits and if they match up to 
what was received, we have a legal message.  If they don’t match up then the sum of the 
positions with incorrect parity gives the position of the single bit error.  For example, if 
0001111 is corrupted into 0001101, then the parity bit for position one is correct, while 
those for positions two and four are incorrect.  This means that the error is in position 
2+4 = 6.  The efficiency of this method makes it the standard. 
 

The Communication Revolution 
 
Just 150 years ago, a routine telephone call was not possible, images were delivered in 
person, and newspapers brought headlines of information that may have been days old.  
There was no TV or radio coverage of world events.  There was no world wide web for 
the world to share its collective knowledge.  
 
Today we take for granted the ability to communicate with our business partners, 
colleagues, friends, and loved ones over long distances and at any time of the day.  Via 
phone calls, e-mail, or fax, we transmit pictures, voice or text to almost anyone and 
anywhere at anytime.  Communication has become faster, cheaper and more 
commonplace.  Mathematics is used to encode, transmit and decode data in a practical 
and secure way.  Mathematics drives the new technology and makes the communication 
revolution possible.   
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Glossary 
 
Quipu – A knotted cord used by the Incas and other cultures to encode numeric 
information. 
Tree – A collection of dots with edges connecting them that have no looping paths. 
Digital Encoding – Encoding information into a series of discrete numbers. 
Analog Encoding – Encoding information with continuous quantities. 
 


